Lecture 1a: Basic Concepts and Recaps

Cédric Archambeau

Centre for Computational Statistics and Machine Learning
Department of Computer Science
University College London
c.archambeau@cs.ucl.ac.uk

Advanced Topics in Machine Learning (MSc in Intelligent Systems)
January 2008

Outline

Lecture 1:

- Course info
- Notations, definitions, recaps ...
- Linear Models for regression
- Gaussian processes for regression

Lecture 2:

- Hidden Markov models and linear state space models
- Nonlinear state space models
- Applications of particle filters
- Guest speaker: Frank Wood (Gatsby unit)

Outline

Lecture 3:

- Dirichlet distribution and its representations
- Dirichlet processes and infinite mixtures
- Dirichlet process mixtures of regressors
- Guest speaker: Yee Whye Teh (Gatsby unit)

Lecture 4: (on Tuesday!)

- Unscented Kalman filters and extensions
- Dirichlet process mixtures of linear dynamical systems
- Guest speakers: Simon Julier (CS) and David Barber (CSML).

Lecture 5:

- Introduction to Ito calculus and stochastic differential equations
- Continuous-time stochastic processes
- Wiener process, Diffusion processes, Markov jump processes, ...

Practical info

Where, when?

- Week 1 to 5.
- Tuesdays 14:00-17:00: Malet Place room 1.04.
- Fridays 10:00-13:00: Rockefeller Building room 339.

What?

- Lectures
- Guest speakers
- Individual report

Exam:

- Written Examination (2.5 hours, 50\%)
- Coursework (50\%)

To pass you must obtain an average of at least 50% when the coursework (1 out of 2) and exam components (2 out of 4) are weighted together.

Practical info (continued)

Individual report:

- Project starts on Tuesday 05/02.
- Report is due before 9:00 on Monday 25/02: send an electronic copy to me via email and hand in a hard copy to the CS reception ${ }^{1}$.
- Literature review, implementation and comparison.
- No longer than 10 pages (including figures), minimal font size 11 pt, no less than 25 mm margins.
- Instructions will follow.

Reports that are handed in late will be penalised as follows: 25% penalty per day late. NO CREDIT will be given afterwards.

Questions: only by email (or after class).

[^0]
Some notations, definitions, etc.

Bold symbols denote column vectors:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{D}
\end{array}\right)=\left(x_{1}, \ldots, x_{D}\right)^{\top}
$$

Capitalised bold symbols denote matrices:

$$
\mathbf{X}=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 Q} \\
\vdots & \ddots & \vdots \\
x_{P 1} & \ldots & x_{P Q}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{P 1} \\
\vdots & \ddots & \vdots \\
x_{1 Q} & \ldots & x_{P Q}
\end{array}\right)^{\top}
$$

Some notations, definitions, etc.

If the function $p(\mathbf{x})$ is the probability density function of a continuous random variable X, then

$$
\forall \mathbf{x} \in \mathbb{R}^{D}: p(\mathbf{x}) \geqslant 0, \quad \text { and } \quad \int p(\mathbf{x}) d \mathbf{x}=1
$$

The expectation of $f(\mathbf{x})$ is defined as

$$
\langle f(\mathbf{x})\rangle=\int f(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}
$$

Examples:

- The mean: $\boldsymbol{\mu}=\langle\mathbf{x}\rangle$.
- The covariance matrix: $\boldsymbol{\Sigma}=\left\langle(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right\rangle$.

The covariance is symmetric and positive semi-definite, i.e. all its eigenvalues are non-negative.

Sum rule of probability (marginalisation): $p(\mathbf{x})=\int p(\mathbf{x}, \mathbf{y}) d \mathbf{y}$.
Product rule of probability: $p(\mathbf{x}, \mathbf{y})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})$.

Some notations, definitions, etc. (continued)

Bayes' rule allows us to update a prior belief on some \mathbf{y} into a posterior belief, based on the observations \mathbf{x} :

$$
\underbrace{p(\mathbf{y} \mid \mathbf{x})}_{\text {posterior }}=\frac{\overbrace{p(\mathbf{x} \mid \mathbf{y})}^{\text {likelihood }} \overbrace{p(\mathbf{y})}^{\text {prior }}}{\underbrace{p(\mathbf{x})}_{\text {evidence }}}
$$

The normalising constant is known as the evidence, the marginal likelihood or the partition function.

Proof

Bayes' rule follows from the product rule:

$$
p(\mathbf{x}, \mathbf{y})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})=p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})
$$

Multivariate Gaussian distribution

Let X be a D-dimensional Gaussian random vector. Its density is defined as

$$
\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-D / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\},
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{D \times 1}$ is the mean and $\boldsymbol{\Sigma} \in \mathbb{R}^{D \times D}$ is the covariance matrix.

Figure: 2-dimensional Gaussian.

Gaussian identities

Let X and Y be jointly Gaussian:

$$
p(\mathbf{x}, \mathbf{y})=\mathcal{N}\left(\left[\begin{array}{l}
\mu_{\mathrm{x}} \\
\boldsymbol{\mu}_{\mathrm{y}}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{\mathrm{xx}} & \boldsymbol{\Sigma}_{\mathrm{xy}} \\
\boldsymbol{\Sigma}_{\mathrm{xy}}^{\mathrm{y}} & \boldsymbol{\Sigma}_{\mathrm{yy}}
\end{array}\right]\right) .
$$

The marginal $p(\mathbf{x})$ is Gaussian with mean μ_{x} and covariance $\boldsymbol{\Sigma}_{\mathrm{xx}}$.
The conditional $p(\mathbf{x} \mid \mathbf{y})$ is Gaussian with mean and covariance equal to

$$
\begin{aligned}
& \boldsymbol{\mu}_{\mathrm{x} \mid \mathrm{y}}=\boldsymbol{\mu}_{\mathrm{x}}+\boldsymbol{\Sigma}_{\mathrm{xy}} \boldsymbol{\Sigma}_{\mathrm{yy}}^{-1}\left(\mathrm{y}-\mu_{\mathrm{y}}\right), \\
& \boldsymbol{\Sigma}_{\mathrm{x} \mid \mathrm{y}}=\boldsymbol{\Sigma}_{\mathrm{xx}}-\boldsymbol{\Sigma}_{\mathrm{xy}} \boldsymbol{\Sigma}_{\mathrm{yy}}^{-1} \boldsymbol{\Sigma}_{\mathrm{xy}}^{\top} .
\end{aligned}
$$

(a) Marginal.

(b) Conditional.

Gaussian identities (continued)

Consider the following two Gaussian distributions:

$$
\begin{aligned}
& p(\mathbf{x})=\mathcal{N}\left(\boldsymbol{\mu}_{\mathrm{x}}, \boldsymbol{\Sigma}_{\mathbf{x x}}\right), \\
& p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}(\mathbf{A} \mathbf{x}+\mathbf{b}, \boldsymbol{\Lambda}) .
\end{aligned}
$$

The marginal $p(\mathbf{y})$ is Gaussian with mean and covariance given by

$$
\begin{aligned}
\mu_{y} & =\mathbf{A} \mu_{\mathrm{x}}+\mathbf{b}, \\
\boldsymbol{\Sigma}_{\mathrm{yy}} & =\boldsymbol{\Lambda}+\mathbf{A} \boldsymbol{\Sigma}_{\mathrm{xx}} \mathbf{A}^{\top} .
\end{aligned}
$$

The posterior $p(\mathbf{x} \mid \mathbf{y})$ is Gaussian with mean and covariance equal to

$$
\begin{aligned}
& \mu_{x \mid y}=\boldsymbol{\Sigma}_{x \mid y}\left\{\boldsymbol{\Sigma}_{x x}^{-1} \boldsymbol{\mu}_{\mathrm{x}}+\mathbf{A}^{\top} \boldsymbol{\Lambda}^{-1}(\mathbf{y}-\mathbf{b})\right\}, \\
& \boldsymbol{\Sigma}_{\mathrm{x} \mid \mathbf{y}}=\left(\boldsymbol{\Sigma}_{\mathrm{xx}}^{-1}+\mathbf{A}^{\top} \boldsymbol{\Lambda}^{-1} \mathbf{A}\right)^{-1} .
\end{aligned}
$$

Gamma distribution

For $x \in \mathbb{R}^{+}$, the Gamma density is defined as follows:

$$
\mathcal{G}(\alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp \{-\beta x\}, \quad \alpha, \beta>0
$$

where $\Gamma(u) \equiv \int_{0}^{\infty} v^{u-1} e^{-v} d v$ is the gamma function. We have

$$
\langle x\rangle=a / b \quad \text { and } \quad\langle\ln x\rangle=\psi(a)-\ln b
$$

The function $\psi(\cdot) \equiv(\ln \Gamma)^{\prime}(\cdot)$ is the digamma function.

Figure: Gamma distribution for two values of a and b.

Multivariate Student- t distribution

The Student- t density ${ }^{2}$ is defined as follows:

$$
\mathcal{S}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)=\frac{\Gamma\left(\frac{\nu+D}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)(\nu \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}}\left(1+\frac{1}{\nu}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)^{-\frac{\nu+D}{2}}
$$

Parameter $\nu>0$ is the shape parameter:

- The Cauchy density is recovered for $\nu=1$.
- The Gaussian density is recovered when $\nu \rightarrow \infty$.

The Student- t density can be reformulated as an infinite mixture of scaled Gaussians:

$$
\mathcal{S}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)=\int_{0}^{\infty} \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma} / u) \mathcal{G}\left(\frac{\nu}{2}, \frac{\nu}{2}\right) d u
$$

where u is a (latent) scale parameter.

[^1]
Multivariate Student- t distribution (continued)

Figure: (a) Student- t distribution for two values of the shape parameter and the corresponding (b) Gamma distribution.

Some notations, definitions, etc. (continued)

The differential entropy is defined as

$$
\mathrm{H}[p(\mathbf{x})]=-\int p(\mathbf{x}) \ln p(\mathbf{x}) d \mathbf{x}
$$

The entropy of a Gaussian is given by $\frac{D}{2} \ln 2 \pi e+\frac{1}{2} \ln |\boldsymbol{\Sigma}|$.
If the continuous random variable Y has the same mean and covariance as the Gaussian random variable X, then $\mathrm{H}[p(\mathbf{y})] \leqslant \mathrm{H}[p(\mathbf{x})]$.

The Kullback-Leibler divergence measures the difference between two densities:

$$
\mathrm{KL}[q \| p]=\int q(\mathbf{x}) \ln \frac{q(\mathbf{x})}{p(\mathbf{x})} d \mathbf{x} \geqslant 0
$$

The KL is asymmetric (thus not a distance) and only zero if $q(\mathbf{x})=p(\mathbf{x})$ for all \mathbf{x}.

Some notations, definitions, etc. (continued)

Jensens's inequality

For a convex function $f(\cdot)$, we have $\langle f(\mathbf{x})\rangle \geqslant f(\langle\mathbf{x}\rangle)$.

Proof

We proof Jensen's inequality for $x \in \mathbb{R}$. Consider the Taylor expansion of $f(x)$ around $\bar{x}=\langle x\rangle$:

$$
f(x)=f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})+\frac{1}{2}(x-\bar{x})^{2} f^{\prime \prime}(\bar{x})+\ldots
$$

A function f is convex if $f^{\prime \prime} \geq 0$ for all x. Hence,

$$
f(x) \geqslant f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})
$$

in a small neighbourhood around \bar{x}, which is fixed. Taking the expectation leads to

$$
\langle f(x)\rangle \geqslant f(\bar{x})+\underbrace{(\langle x\rangle-\bar{x})}_{=0} f^{\prime}(\bar{x}) .
$$

Matrix identities

Woodbury identity:

$$
(\boldsymbol{\Psi}+\mathbf{V} \boldsymbol{\Phi} \mathbf{W})^{-1}=\boldsymbol{\Psi}^{-1}-\boldsymbol{\Psi}^{-1} \mathbf{V}\left(\boldsymbol{\Phi}^{-1}+\mathbf{W} \boldsymbol{\Psi}^{-1} \mathbf{V}\right)^{-1} \mathbf{W} \boldsymbol{\Psi}^{-1}
$$

where $\boldsymbol{\Psi} \in \mathbb{R}^{N \times N}, \boldsymbol{\Phi} \in \mathbb{R}^{M \times M}, \mathbf{V} \in \mathbb{R}^{N \times M}$ and $\mathbf{W} \in \mathbb{R}^{M \times N}$.

- When $\boldsymbol{\Psi}^{-1}$ is known and $N \gg M$, this speeds up the matrix inversion.
- For determinants we have $|\boldsymbol{\Psi}+\mathbf{V} \boldsymbol{\Phi} \mathbf{W}|=|\boldsymbol{\Psi}||\boldsymbol{\Phi}|\left|\boldsymbol{\Phi}^{-1}+\mathbf{W} \boldsymbol{\Psi}^{-1} \mathbf{V}\right|$.

Cholesky decomposition:

When $\Lambda \in \mathbb{R}^{D \times D}$ is symmetric, positive definite, it can decomposed as follows:

$$
\mathbf{\Lambda}=\mathbf{Q}^{\top} \mathbf{Q}
$$

where the cholesky factor $\mathbf{Q} \in \mathbb{R}^{D \times D}$ is upper triangular.

- Solving the linear system $\mathbf{Q x}=\mathbf{b}$ by backward substitution is $\mathcal{O}(N)$.
- Computing the inverse of $\boldsymbol{\Lambda}$ by backward-forward substitution is $\mathcal{O}\left(N^{2}\right)$.
- The determinant of $\boldsymbol{\Lambda}$ is given by $\prod_{d} Q_{d d}^{2}$.

References

- Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, 2006.
- Tutorial on Gaussian processes at NIPS 2006 by Carl E. Rasmussen.
- The Matrix Cookbook by Kaare B. Petersen and Michael S. Pedersen.

[^0]: ${ }^{1}$ Malet Place Engineering building, 5th floor.

[^1]: ${ }^{2}$ Student's t density was published in 1908 by William S. Gosset, while he worked at Guinness Brewery in Dublin and was not allowed to publish under his own name.

