
Reduced State Routing in the Internet ∗

Ramakrishna Gummadi †

Ramesh Govindan‡
Nupur Kothari§

Brad Karp ¶
Young-Jin Kim‖

Scott Shenker∗∗

ABSTRACT
In today’s Internet core, routers store forwarding state pro-
portional to the number of edge networks. As the Internet
grows and core line rates increase, routers require memo-
ries that are increasingly fast and large—and are correspond-
ingly increasingly expensive and difficult to engineer. In this
paper, we present Reduced-State Routing (RSR), in which
core routers require state only concerning the network topol-
ogy within a two-hop radius, and thus of a size indepen-
dent of the total number of Internet edge networks. RSR
achieves this feat by routing geographically using two sets
of node addresses: virtual coordinates, that are assigned to
reflect the link costs within an autonomous system; and ge-
ographic coordinates, that correspond to nodes’ physical lo-
cations. RSR routes greedily on virtual coordinates, and falls
back to face routing on geographic coordinates when greedy
progress is impossible on virtual coordinates. Unlike pre-
vious geographic routing schemes, RSR works on Internet-
like graphs (rather than only on wireless-like graphs), and
supports policy routing. By simulating RSR on real tier-1
ISP topologies, we demonstrate that RSR achieves low path
stretch, comparable to that caused by policy routing in to-
day’s Internet.

1. INTRODUCTION
With increasing aggregate router bandwidths in ISP cores,

forwarding packets at line speed continues to be a major
challenge for vendors [6]. One of the bottlenecks is IP lookup;
the need to perform longest-match prefix lookups over large
(and continually growing) routing tables has pushed researchers
to consider CAM-based hardware solutions and innovative
table compression schemes [5, 6, 17] that minimize mem-

†University of Southern California. gummadi@usc.edu
‡University of Southern California. ramesh@usc.edu
§University of Southern California. nkothari@usc.edu
¶CMU and Intel Research. bkarp@cs.cmu.edu
‖University of Southern California. youngjki@usc.edu
∗∗ICSI and UC Berkeley.shenker@icsi.berkeley.edu
∗This material is based in part upon work supported by the National
Science Foundation under Grant No. 0330178. Any opinions, find-
ings and conclusions or recomendations expressed in this material
are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation (NSF).

ory bandwidth requirements and size. In this paper, we de-
scribe Reduced-State Routing (RSR), a routing architecture
that greatly reduces the state requirements for packet for-
warding at core Internet routers, and thus reduces the cost
of core router hardware, both for high-speed forwarding en-
gines, and for high-speed memory used to hold forwarding
tables.

RSR builds on the geographic routing schemes discussed
in the wireless routing literature [1, 10, 12]. In geographic
routing, nodes are addressed by geographic location and nodes
greedily forward packets to those neighbors closer to the
destination than themselves. When no such neighbor can
be found, geographic routing relies on face routing on a pla-
nar subgraph of the full network graph to escape this local
maximum; see [1, 10, 12] for details. At each hop, nodes
base all forwarding decisions solely on the positions of their
neighbors and the position of the packet’s destination. Thus,
nodes’ forwarding tables are of size equal to their fanout,
and independent of total network size.

This scaling property has much appeal for Internet rout-
ing1, but there are two drawbacks that prevent geographic
routing from being directly applied in the Internet.

The first issue is that of topology. Existing geographic
routing schemes rely on face-routing techniques to reach all
destinations successfully. Face routing assumes radio-like
connectivity, where nodes can directly communicate if and
only if they are within a certain distance of each other. In-
ternet connectivity does not have this property: connectivity
is only loosely correlated with, not determined by, proxim-
ity. In recent work [11], we presented a distributed probing
scheme called CLDP that guarantees correct face routing on
arbitrary graphs. RSR employs CLDP to apply geographic
routing to Internet-like graphs.

However, Internet routing requires more than mere reach-
ability; policy constraints and traffic engineering (TE) con-
siderations require choosing routes by metrics other than ge-

1Finn [7] and Deering [4] proposed geographic routing and ad-
dressing for the Internet, respectively. These approaches have much
charm, but the former floods packets when a sequence of hops
monotonically closer to the destination does not exist, and the lat-
ter requires that providers interconnect at all major metropolitan
areas. Here we accept the current Internet addressing scheme and
provider interconnection configuration as given, eschew flooding,
and seek to achieve reduced routing state within those constraints.



ographic distance or hop count. Thus, the second problem
with geographic routing schemes is that they slavishly fol-
low the paths determined by node coordinates, and thus can-
not easily accommodate intra-ISP TE and inter-ISP policy
routing.

This paper focuses on this second issue, proposing in RSR
a design that allows the forwarding state size in core ISP
routers to be a function of node fanout, not network size, but
that still provides the same administrative autonomy, policy
hooks, and TE controls found in the existing Internet. RSR
requires longer packet headers than IPv4’s, but comparable
in length to those used in IPv6. In terms of route length, on
the real ISP topologies that we have tested, a preliminary
version of RSR, without extensive optimization, achieves
path stretches less than 2. To put this number in context,
evidence suggests that policy routing in today’s Internet in-
flates paths by that much or more [18].

We continue in Section 2 by describing RSR in detail. We
then offer a performance evaluation of RSR in Section 3,
and conclude in Section 4 with a discussion of future work
directions.

2. REDUCED-STATE ROUTING
In this section, we discuss the design requirements for

RSR, then outline the approach we adopt to meet those re-
quirements. We then describe RSR’s components in detail,
and conclude by illustrating how they fit together with an
end-to-end packet forwarding example.

2.0.0.1 Design Requirements.
Our central aim in RSR is to allow an ISP’s core routers

to require no forwarding table state beyond their immediate
neighbors in that same same ISP’s core. Traditional geo-
graphic routing allows each node to route using a forwarding
table consisting only of one entry for each of its single-hop
neighbors [10]. We add three other requirements for RSR
crucial for use in the Internet that are unsatisfied by prior
geographic routing schemes.

First, RSR must choose intra-domain routes that reflect the
ISP’s traffic engineering decisions (R1). These routes often
do not minimize Euclidean distance between source and des-
tination, nor hop count. In this paper, we consider one way
in which ISPs today engineer their backbones—by tuning
link weights in their IGP (e.g., OSPF or IS-IS).

Second, RSR must find inter-domain paths that reflect ISPs’
policy decisions (R2). Again, these AS paths, found today
by BGP, typically do not minimize Euclidean distance, nor
hop count.

While achieving goals R1 and R2, RSR must allow ISPs
to use the same “knobs” they do today to accomplish intra-
domain TE and inter-domain policy routing (R3). To that
end, we allow ISPs to continue to configure BGP policies
and IGP link weights exactly as they do today. RSR fully
preserves the control and policy planes of entities underpin-
ning the current Internet’s naming and routing system: Au-

tonomous Systems, the two-level routing hierarchy consist-
ing of intra-domain and and inter-domain routing protocols,
and the Domain Name System. However, objects used in the
data plane, such as node addresses, data used for computing
routes within and across ISPs, and entries in the forwarding
tables of routers’ line cards are slightly different. 2

2.0.0.2 RSR Overview.
We now give a schematic overview of RSR. Let us be-

gin by considering intra-domain routing, inside a single ISP
backbone’s AS. A packet arrives at an ingress router at the
edge of the AS. Let us assume for the moment that the egress
router in that AS is known.

The ISP runs the same link-state IGP it does today, with
edge weights that cause TE to occur. As a result, each router
holds the full link-state database, which is the full intra-
domain network graph within the AS. RSR does not gen-
erate a forwarding table from this information. Rather, it
embeds the network graph into an n-dimensional coordinate
space, yielding n-dimensional virtual coordinates (VC) for
each router. This embedding has the property that the Eu-
clidean distance between two nodes’ VCs is proportional to
the cost of the path between them in the network graph (i.e.,
the sum of its link costs).

Within an AS, RSR simply routes greedily on these VCs.
That is, each packet contains a VC destination address, each
router knows its own VC address, and each router knows
the VC addresses of its neighbor routers. A router com-
putes its own Euclidean VC distance from the destination,
and those of its neighbors, and forwards the packet to the
neighbor closest to the destination, provided the neighbor is
closer than the forwarding router.

Note that greedy routing on VCs may fail; it’s possible that
a router’s neighbors may have greater or equal Euclidean VC
distance to the destination than itself. In this case, RSR re-
covers by routing using a different set of addresses. Each
packet also carries the geographic coordinates (GC) for the
destination, its two-dimensional real-world position. And
each router knows its own GC, and those of its single-hop
neighbors. When greedy forwarding fails using VCs, RSR
instead forwards the packet using GCs, by face routing atop
CLDP, which always succeeds in any network graph [11].

The intuition behind this overall intra-domain routing ap-
proach is that greedy forwarding on VCs respects TE con-
straints, but may encounter regions of a topology where greedy
forwarding is impossible. Face routing on GCs does not re-
spect TE, but always succeeds on any topology. Thus, RSR
tries VC routing first, and falls back to GC routing only when
needed to ensure reachability.3 The aim is that the result-
ing combination ensures reachability, with some (hopefully
small) divergence from TE constraints.
2While incremental deployment of RSR bears consideration, we do
not do so herein.
3We use GC’s and not VC’s for face routing because the face rout-
ing we currently use is guaranteed to find a loop-free path only in
two dimension graphs.



We now consider inter-domain routing. An RSR sender
marks all packets with a policy tag (PT), which identifies the
destination host’s AS. All ISP edge routers run BGP as they
do today, but exchange routes with PT’s (AS numbers) as
destinations, rather than with IP prefixes. An ingress router
then uses the destination PT field in a received packet and
the forwarding state it established using BGP to choose the
appropriate egress router within that same AS. It then writes
the VC address for that egress router into the packet, sep-
arately from the end-host destination address in the packet.
Thus, under RSR, this egress router address field is rewritten
at each AS’ ingress router.4

We now provide further details concerning RSR’s work-
ings.

2.0.0.3 Node Addressing.
There are three addressing entities in RSR, as introduced

above. Virtual Coordinates (VCs) are in an n-dimensional
space.5 VCs reflect intra-domain TE constraints. They are
not globally unique, but are rather AS-scoped. Geographic
Coordinates (GCs) are in two-dimensional space, and are
merely the physical positions of routers (if we are concerned
about giving away the GC’s of routers, we can use “syn-
thetic” GC’s using techniques in [15]). GCs are globally
unique; a GC’s low-order bits are a unique ID of a router or
end host (e.g., an Ethernet MAC address). Finally, a Policy
Tag (PT) identifies a host or router’s AS; it may be thought
of as today’s AS number.

In RSR, the DNS resolves a host-name to a GC address,
and GC addresses are used in transport protocol control blocks.

A packet carries fields as follows:

Field Description
src GC source host geo coords6

dst GC dst host geo coords
dst VC dst host virt coords
dst PT dst host policy tag7

egress GC AS egress router geo coords
egress VC AS egress router virt coords

We assume that each host and router knows its own posi-
tion, and thus its GC address, and also knows its own AS,
and thus knows its own PT. A sending host may thus fill in
the src GC field for a packet it generates, and after a DNS
lookup, may fill in the dst GC field as well. What remains to
be discussed is how a destination’s VC field and PT field are
generated, and how they are written into packets.

2.0.0.4 Generating VCs.
4This rewriting of addresses at AS boundaries is reminiscent of
IPNL [8], but for different aims (small routing state, rather than
flexibility), and by different means (using state obtained from BGP,
rather than state obtained from DNS).
5In this work, n = 16.
6In the first packet of a connection, the source would include its
own VC and PT in the options header so that the destination need
not do discover them separately.
7In our embedding, dst VC and dst PT together occupy only 128
bits.

As previously described, instead of performing a Dijk-
stra computation on the link state database, each RSR router
computes an embedding of the link-weighted topology onto
an n-dimensional coordinate space. The embedding algo-
rithm we use is adapted from from Bourgain’s algorithm [14].
This algorithm belongs to a body of literature dealing with
embedding metric spaces into other metric spaces (see [9,
14] for an exposition of such techniques).

Given a weighted graph, we observe that we can construct
a metric space on this graph by forming the full Dijkstra ma-
trix D. Bourgain’s algorithm shows how to embed (i.e., cal-
culate the VCs) a given set of n points forming a metric space
(this metric space is D in our case) into O(log(n)) dimen-
sions with O(log(n)) distortion. It is a simple probabilistic
algorithm; because of space constraints, we do not cover its
details here.

The resulting assignment of VCs has the property that the
Euclidean distance between any two routers in this n-D co-
ordinate system is “close” to the least path cost between
those routers in the underlying topology. Thus, RSR approx-
imately satisfies an ISP’s TE requirements by computing an
embedding with low distortion. Note that a router’s VC can
change under dynamics such as link weight changes and link
failure/restores. These dynamics mimic changes in forward-
ing tables that occur in conventional routing.

We finally note that in RSR, the VC of a host is the VC
assigned to its first-hop router; this VC can be discovered
using standard router discovery mechanisms [3]. We defer
discussion of how a sending host learns a destination host’s
VC and PT (which are volatile, and not available in DNS)
until the end of this section.

2.0.0.5 Intra-Domain Routing.
An RSR router’s forwarding table contains only the node

addresses and the current virtual coordinates of its imme-
diate neighbors.8 As previously described, routers forward
packets to neighbors that are progressively closer to the des-
tination in VC space. This greedy forwarding will often, but
not always, succeed. When no closer neighbor is available,
RSR falls back to using geographic face routing on GCs, us-
ing the dst GC address field of the packet. Simply put, geo-
graphic face routing traverses faces of an almost [11] planar
graph generated by CLDP.9 Face routing continues until the
packet reaches a router whose VC is closer to the destina-
tion than the router that couldn’t forward greedily using the
packet’s dst VC address field.

Note that face routing can greatly increase the path stretch,
since geographic routing is unaware of link weights. In fact,
in our simulations (Section 3), we show this effect is sig-
nificant. Fortunately, a simple one-hop lookahead heuris-

8We describe below a slight change to this that requires routers to
maintain a little bit more information.
9In this paper, for reasons of space, we have omitted a description
of how CLDP works. For our purposes, what is important here
is that CLDP ensures failure-free geographic routing on arbitrary
graphs.



CR2CR1 ER2ER1 AS1

S

……

AS2

……

CR4CR3 ER4ER3 AS2

D

…

…

VC

CR2
GC

ER1
VC

ER2

GC

CR2

VC

ER2

ER4D
GC PT

S
GC

ER2
VC

S-ER1:
dst

Best egress
edge router 

ER1-CR1:
neighbors

Packet Dst/Src:
VC

AS2 ER2
GC

Figure 1: RSR example

tic works well to dramatically reduce stretch, as also shown
in Section 3. In this technique, routers keep the VCs and
GCs not only of their neighbors, but also of their neighbors’
neighbors as well. This set of nodes is used both in the
greedy VC routing phase, as well as in determining when
to exit GC routing.

Finally, we emphasize that RSR only approximately sat-
isfies ISP TE requirements, since not all packets take least-
cost paths. Thus, stretch (the ratio of the cost of the actual
path taken to the least cost path) is an important measure of
RSR performance, and one we evaluate in Section 3.

2.0.0.6 Inter-Domain Routing.
To complete our description of RSR, we now outline how

RSR implements policy routing. In RSR, ISPs (or autonomous
systems) run BGP essentially unchanged, except for one cru-
cial difference: instead of distributing IP prefix information
in BGP, RSR disseminates opaque policy tags. A policy tag
is an identifier associated with a set of destinations. RSR
applies the same policy for routing to all destinations as-
sociated with a policy tag. The idea of policy tags is not
new; policy atoms [2] are analogous to policy tags. A sim-
ple example of a policy tag is an AS number; all destinations
within the AS are subject to the same policy.

When forwarding a packet to an arbitrary destination, an
AS’s ingress router extracts the dst PT field from the packet,
then determines the VC of the egress router for that destina-
tion within the same AS, and writes that VC into the packet’s
egress VC field. Subsequently, within that AS, the packet
is routed using the egress VC field. This is key to RSR’s
scaling, since core routers now need only maintain reduced
routing state. Ingress routers, however, maintain state com-
parable to today’s Internet. Unlike in today’s routing system,
where all intra-domain routers must run I-BGP and maintain
full forwarding tables, the PT-to-egress-VC mapping need
only be maintained at edge routers. Moreover, because map-
ping a packet’s PT to its egress router requires a perfect-
match and not a longest-prefix-match lookup, fast-path for-
warding is significantly simplified at edge routers.

2.0.0.7 Putting It All Together.
We now pictorially describe how these various compo-

nents work together in RSR. Figure 1 shows what forward-

ing state is kept in RSR to support end-to-end routing be-
tween hosts S and D, and how addresses are used inside that
flow’s packets.

A packet holds the GC addresses of the source and des-
tination (SGC and DGC, respectively, in the figure). It also
holds the VC and PT values of the destination (ER4VC and
AS2PT respectively, in the figure). Finally, the egress VC
value held is overwritten at each AS’s ingress router (to be
ER2VC in AS1, and ER4VC in AS2 in the figure).

How does the source learn ER4VC and AS2PT in the first
place, given that a VC is ephemeral and not globally unique,
and therefore unsuitable for keeping in DNS? The first packet
from the source to the destination is routed geographically,
and the destination’s VC and PT is returned in response to
that first packet (e.g., piggybacked on an ACK or a transport-
level handshake message). Subsequently, all packets from
the source contain a (possibly dynamically changing) VC
and PT of the destination. If the destination VC changes dy-
namically, as during long-lived connections, fast path rout-
ing on a stale destination VC would take the packet to the
wrong last-hop router that discovers this problem (e.g., DGC

falls outside the geographic region that the router handles),
and returns an ICMP message with SGC as the destination ad-
dress so that the source can (re)discover the new destination
VC. Likewise, when destination changes providers, sources
discover new PT’s.

The forwarding table that an edge router like ER1 stores in
the line card of the S–ER1 link is shown in Figure 1. When
a packet with a valid destination VC address enters ER1, it
looks up the best egress edge router using the packet’s desti-
nation PT field, and writes the resulting VC into the packet
header (ER2VC in this case). Now that there is sufficient in-
formation inside the packet about the intermediate destina-
tion (ER2), ER1 uses the egress VC address (ER2VC) as the
destination address, and invokes the RSR forwarding algo-
rithm to forward it to a core router CR1. Thus, edge routers
do both a lookup to decide the egress, and a next-hop lookup
based on the egress VC.

Core routers are simpler since, as described above, they
can keep reduced state and forward on VCs alone. The for-
warding state that a core router like CR1 keeps in its line card
for the link ER1–CR1 is also shown in Figure 1. CR1 selects
CR2 on this basis, and this forwarding process repeats until
the packet reaches ER2.

3. RESULTS
In this section we present the performance of the core

components of RSR (virtual co-ordinate assignment, and for-
warding strategy as described in Section 2) by simulating
them on realistic ISP topologies. Our primary goal is to
demonstrate the feasibility of RSR on realistic topologies;
it is not immediately obvious that our embedding strategy or
the use of face routing will result in reasonable path stretches.
We developed a simulator in C that, given a topology with
associated link weights, computes the embedding of the topol-



ogy in higher dimensions, and forwards packets between any
pair of nodes.

We evaluate RSR on ISP topologies inferred by Rock-
etfuel [16]. These topologies are annotated with the geo-
graphic location of routers, and inferred link weights. We
use this information to compute the router VCs, and to im-
plement face routing.

At first glance, it appears that RSR would perform poorly
since it employs an embedding that can distort paths, and
it uses geographic face routing which is oblivious to link
weights. Our primary measure for validating RSR is path
stretch: the ratio of the total weight along a path taken by
RSR to the least cost path.10 Thus, one metric we use for
measuring RSR performance is the average path stretch taken
over all pairwise paths in the topology.

However, average stretch alone does not accurately cap-
ture the performance of RSR. If paths A and B have the same
stretch, but B is significantly longer than A, then B should
arguably count for more when measuring performance since
packets traversed using B consume more resources. We ac-
count for this using two different metrics. First, we com-
pute a metric called aggregate stretch which is the ratio of
the sum of all pairwise RSR paths to the sum of all pair-
wise least cost paths. This aggregation naturally accounts for
long paths. Second, we compute a metric called discounted
stretch, which is defined as the average over all paths of dis-
counted path stretch. This latter quantity is defined for a
given path as C+pa

C+ps
, where C is a constant, pa is cost of the

path chosen by RSR, and ps is the least cost path between
the same endpoints. Intuitively, discounted path stretch dis-
counts paths of cost less than C in computing stretch.

Table 1 displays the performance of RSR on a variety of
ISP topologies. For each of our simulations, we use an em-
bedding in 16 dimensions and assign 5 bits per dimensions.
For context, Table 1 also shows the results for grid and ran-
dom topologies. Random topologies are random graphs in
the unit square with randomly assigned link weights chosen
uniformly between 1 and 10 (this range is comparable to ISP
link weight range). Grid topologies are n× n grids whose
link weights are similarly assigned.

Table 1 shows that, for most of our ISP topologies, stretch
values are less than two. Indeed, for some of the smaller
topologies like Exodus, RSR achieves stretches close to 1.1.
This is reassuring, since these values are comparable to those
reported for the stretch induced by policy routing that counts
path hops [18]. At the same time, this result is surprising
since it isn’t a priori clear that RSR could achieve such low
stretch values. We explain this as follows. Stretch has two
components: one induced by greedy routing on the VCs,
and the other induced by face routing (both contributions are
shown in Table 1. We found that the former component in-
flates stretch by only a small extent (not much more than
∼ 2X) no matter how much % of the path is spent in greedy

10In this work, lacking ISP data, we do not quantify the correspond-
ing latency change (most likely to be higher for most paths).

mode, while the stretch due to face routing is high (50 or
higher) if we don’t use one level lookahead (which causes a
comparatively higher % of the path to be spent in face rout-
ing mode). Since face routing is inherently oblivious to link
weights, the impact on the overall stretch is severe. Our strat-
egy of using a 1 hop lookahead both during greedy routing
and checking when we can exit face routing markedly re-
duces the impact of face routing by causing the packet to
spend a large percentage of its path in greedy mode, and en-
ter face routing for only short segments. Consequently, each
face routing segment incurs a smaller stretch that is compa-
rable to greedy.

In addition, our simulations incorporate another simple
trick that reduces the cost of face walks. We observed that
our ISP topologies have many degree 1 nodes. These are ba-
sically leaf nodes from which there is no where to go except
back during face routing. We avoid using such links during
face routing.

Two observations about the table are worth highlighting.
Discounted stretch is generally lower than average stretch,
indicating that a number of paths which contribute to the
increased stretch are short paths. This is particularly evi-
dent for the Sprint topology, whose average stretch is slightly
higher than 2, but whose discounted stretch is comparatively
low. In addition, aggregate stretch is sometimes higher than
average stretch and sometimes lower, indicating that some
topologies have a greater fraction of longer paths with greater
stretches than others. From the Table, it can be seen that this
variation is not much.

Aside from stretch, there are several secondary perfor-
mance questions in RSR. To these we present some prelimi-
nary answers. One such question is: what address size is suf-
ficient, and how many dimensions are sufficient for the em-
bedding? We extensively examined stretch performance for
various values of these quantities, and found that an 80-bit
address on a 16-dimensional embedding performs quite well
(performance saturates for higher address bit budgets and
higher number of dimensions). Also, given a fixed address
budget, we see a threshold for the bit resolution/dimension
below which stretch degrades. Thus, it seems to always be
preferable to use a lower (e.g. 16) dimensional embedding
with resolution higher than the threshold (5 bits in our case),
than a higher dimensional embedding with lower bits per di-
mension (say 20D with 4 bits/D or 80D with 1bit/D). These
observations are specific to our choice of embedding algo-
rithm (Bourgain’s embedding), but we expect to see such
“sweet spots” for other other algorithms as well.

Given that RSR uses a one-hop lookahead for greedy rout-
ing, another question is: what is the precise amount of state
that core routers need to keep? As Table 1 shows, both aver-
age and maximum states for all our ISP topologies are rela-
tively low; Sprint incurs the highest maximum state. In gen-
eral, one would expect core routers to have relatively low
state despite the existence of power-laws in router topology;
that is because most of the high-degree nodes in the router



Topology Total Average Maximum Average Average Aggregate Discounted Greedy Face Embedding Time
Nodes Degree State State Stretch Stretch Stretch (C=3) Stretch Stretch /Dijkstra Time

Grid 400 3.800 12 11.008 1.439 1.497 1.413 1.763 1.124 0.536

Random 400 18.51 342 253.685 2.287 2.252 1.691 1.695 2.205 0.575
AS 1239

Sprint 315 5.171 135 37.810 2.153 1.900 1.724 1.723 5.741 0.624
AS 1755
Ebone 86 2.744 28 11.826 2.167 2.348 1.966 1.627 3.625 2.72

AS 3257
Tiscali 181 3.154 71 21.613 1.77 1.707 1.592 1.744 1.91 1.53

AS 3967
Exodus 78 2.769 32 13.308 1.204 1.194 1.170 1.137 1.377 3.797

AS 6461
Abovenet 141 4.319 71 22.475 1.583 1.650 1.472 1.526 1.623 1.56

Table 1: Results for a 16 dimensional embedding and 80 bit address
topology tend to be at the edges [13]. Also, note that the ran-
dom topology has a much higher maximum state. This ex-
plains its surprisingly low stretch given that node locations
are completely random, and that the average node degree is
about 4X more than that of the largest ISP (Sprint); by keep-
ing so much lookahead state, RSR is able to more frequently
avoid face routing on the random graph.

Finally, the cost of computing the embedding is an im-
portant performance issue. Table 1 shows that the the time
taken to compute the embedding is comparable to, or slightly
larger than, the time taken to compute least cost routes using
Dijkstra’s algorithm.

In summary, our results indicate that RSR performs rea-
sonably well by several metrics. The results we present are
obtained without much performance tuning, save for a cou-
ple of optimizations we discussed already. In general, we
expect that we can improve the overall performance of RSR
by more carefully examining the various design choices and
their attendant trade-offs. We leave the evaluation of RSR’s
end-to-end path stretch performance across multiple ISPs to
future work.

4. CONCLUSION
We have presented RSR, a novel and feasible approach to

reducing forwarding state size at core routers, that allows
ISPs to engineer traffic and control routing policy using the
same IGP link weight and BGP policy mechanisms they use
today. RSR brings the scalability of geographic routing to
the Internet by embedding link weights into a virtual coordi-
nate system, and routing greedily in that virtual coordinate
system; and by falling back on greedy routing on physical
node locations to ensure reachability in all network graphs.
Thereby, RSR drastically reduces the state requirement at
an ISP backbone’s core routers, which only need keep state
proportional to their fanout. Our simulation results demon-
strate that on real ISP backbone topologies, RSR achieves
this state reduction with bearable path stretches. While we
demonstrated in this paper that RSR can meet TE rules rep-
resented as IGP link weights, it would be interesting in fu-
ture to examine how to make VC routing work across more
complex TE goals embodied by richer MPLS designs.

5. REFERENCES
[1] P. Bose and P. Morin. Online routing in triangulations. In ISAAC:

10th International Symposium on Algorithms and Computation,
1999.

[2] A. Broido and K. C. Claffy. Analysis of routeviews bgp data: Policy
atoms. In Proc. of Network-related Data Management Workshop,
May 2001.

[3] S. Deering. ICMP router discovery messages (rfc 1256), September
1991.

[4] S. Deering. Metro-based addressing.
ftp://parcftp.xerox.com/pub/net-research/metro-addr-slides-jul95.ps

[5] M. Degermark, A. Brodnik, S. Carlson, and S. Pink. Small
Forwarding Tables for Fast Routing Lookups. SIGCOMM, 1997.

[6] W. Eatherton, Z. Dittia, and G. Varghese. Tree bitmap:
Hardware/software ip lookups with incremental updates. ACM
SIGCOMM Computer Communications Review, 34(2), 2004.

[7] G. G. Finn. Routing and addressing problems in large
metropolitan-scale internetworks. Technical Report ISI/RR-87-180,
Information Sciences Institute, Mar. 1987.

[8] P. Francis and R. Gummadi. Ipnl: A nat-extended internet
architecture. In Proc. of the ACM SIGCOMM Conference on
Network Architectures and Protocols ’01, 2001.

[9] P. Indyk. Algorithmic applications of low-distortion embeddings. In
Proc. of 42nd IEEE Symposium of Foundations of Computer
Science ’01, 2001.

[10] B. Karp and H. T. Kung. Gpsr: Greedy perimeter state routing for
wireless networks. In Proc. of 6th ACM Int. Conf. on Mobile
Computing and Networking (MobiCom ’00), 2000.

[11] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Practical and
robust geographic routing in wireless networks. Technical Report
04-832, Department of Computer Science, University of Southern
California, 2004.

[12] F. Kuhn, R. Wattenhofer, and Z. Zollinger. Worst-case optimal and
average-case efficient geometric ad-hoc routing. In Proceedings of
the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC-03), 2003.

[13] L. Li, D. Alderson, W. Willinger, and J. Doyle. A first principles
approach to understanding the internet’s router-level topology. In
Proc. of the ACM SIGCOMM Conference on Network Architectures
and Protocols ’04, August 2004.

[14] J. Matousek. Lectures on Discrete Geometry. Springer, 2002.
[15] A. Rao, C. Papadimitriou, S. Shenker, and I Stoica. Geographic

routing without location information. In Proceedings of the 9th
annual international conference on Mobile computing and
networking, 2003.

[16] N. Spring, R. Mahajan, and D. J. Wetherall. Measuring isp
topologies with rocketfuel. In Proc. of the ACM SIGCOMM
Conference on Network Architectures and Protocols ’02, 2002.

[17] V. Srinivasan and G. Varghese. Fast address lookups using
controlled prefix expansion. ACM Transactions on Computer
Systems, 17(1):1–40, Feb. 1999.

[18] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. The
impact of routing policy on internet paths. In INFOCOM, 2001.


