
Two-Phase Commit

Brad Karp
UCL Computer Science

CS GZ03 / M030
16th October 2017

2

Context: Sharing and Failures

• Thus far:
– NFS: share one filesystem among many

clients, with explicit communication, caching,
and (weak) consistency

– Ivy: share memory among many CPUs, with
implicit communication, read-only sharing,
and stronger consistency

• What happens when components in
distributed system fail?

3

Challenge:
Agreement in Presence of Failures

• Two servers must each take an action in
distributed system

• Can we ensure they agree to do so?
• Example: transfer money from bank A to bank B

– Debit A, credit B, tell client “OK”
• Want both to do it or neither to do it
• Never want only one side to act

– Better if nothing happens!
• Goal: Atomic Commit Protocol

4

Transaction Processing Context:
Two Kinds of Atomicity

• Serializability:
– Series of operations requested by users
– Outside observer sees them each complete

atomically in some complete order
– Requires support for locking

• Recoverability:
– Each operation executes completely or not at

all; “all-or-nothing semantics”
– No partial results

5

Transaction Processing Context:
Two Kinds of Atomicity

• Serializability:
– Series of operations requested by users
– Outside observer sees them each complete

atomically in some complete order
– Requires support for locking

• Recoverability:
– Each operation executes completely or not at

all; “all-or-nothing semantics”
– No partial results

Today’s topic: recoverability
Assume for now some external entity serializes:
Lock server may force transactions to execute one

at a time
Or maybe only one source of transactions

6

Atomic Commit Is Hard!

• A -> B: “I’ll commit if you commit”
• A hears no reply from B
• Now what?
• Neither party can make final

decision!

7

Straw Man Atomic Commit Protocol

• Create Transaction
Coordinator (TC),
single authoritative
entity

• Four entities: client,
TC, Bank A, Bank B

• Client sends “start” to
TC

• TC sends “debit” to A
• TC sends “credit” to B
• TC reports “OK” to

client

client

TC

BA

8

Straw Man Atomic Commit Protocol

• Create Transaction
Coordinator (TC),
single authoritative
entity

• Four entities: client,
TC, Bank A, Bank B

• Client sends “start” to
TC

• TC sends “debit” to A
• TC sends “credit” to B
• TC reports “OK” to

client

client

TC

BA

“start”

9

Straw Man Atomic Commit Protocol

• Create Transaction
Coordinator (TC),
single authoritative
entity

• Four entities: client,
TC, Bank A, Bank B

• Client sends “start” to
TC

• TC sends “debit” to A
• TC sends “credit” to B
• TC reports “OK” to

client

client

TC

BA

“start”

“debit”

10

Straw Man Atomic Commit Protocol

• Create Transaction
Coordinator (TC),
single authoritative
entity

• Four entities: client,
TC, Bank A, Bank B

• Client sends “start” to
TC

• TC sends “debit” to A
• TC sends “credit” to B
• TC reports “OK” to

client

client

TC

BA

“start”

“credit”“debit”

11

Straw Man Atomic Commit Protocol

• Create Transaction
Coordinator (TC),
single authoritative
entity

• Four entities: client,
TC, Bank A, Bank B

• Client sends “start” to
TC

• TC sends “debit” to A
• TC sends “credit” to B
• TC reports “OK” to

client

client

TC

BA

“start”

“credit”“debit”

“OK”

12

Failure Scenarios

• Not enough money in A’s bank account
– A doesn’t commit, B does

• B’s bank account no longer exists
– A commits, B doesn’t

• Network link to B broken
– A commits, B doesn’t

• One of A or B has crashed
– Other of A or B commits, A or B doesn’t

• TC crashes between sending to A and B
– A commits, B doesn’t

13

Atomic Commit:
Defining Desirable Properties

• TC, A, and B have separate notions of
committing

• Safety
– (Really, “correct execution”)
– If one commits, no one aborts
– If one aborts, no one commits

• Liveness:
– (In a sense, “performance”)
– If no failures, and A and B can commit, then commit
– If failures, come to some conclusion ASAP

14

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

15

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

16

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”

17

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”“prepare”

18

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”“prepare”
“yes”

19

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”“prepare”

“yes”
“yes”

20

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”“prepare”

“yes”
“yes”

“commit”

21

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”“prepare”

“yes”
“yes”

“commit”“commit”

22

Correct Atomic Commit Protocol
• TC sends “prepare”

messages to A and B
• A and B respond, saying

whether they’re willing to
commit

• If both say “yes,” TC
sends “commit” messages

• If either says “no,” TC
sends “abort” messages

• A and B “decide to
commit” if they receive a
commit message.
– In example, “commit”

means “change bank
account”

client

TC

BA

“start”

“prepare”“prepare”

“OK”

“yes”
“yes”

“commit”“commit”

23

Protocol’s Safety, Liveness?

• Why is previous protocol correct (i.e.,
safe)?
– Knowledge centralized at TC about willingness

of A and B to commit
– TC enforces both must agree for either to

commit
• Does previous protocol always

complete (i.e., does it exhibit
liveness)?
– No! What if nodes crash or messages lost?

24

Liveness Problems

• Timeout
– Host is up, but doesn’t receive message it

expects
– Maybe other host crashed, maybe network

dropped message, maybe network down
– Usually can’t distinguish these cases, so

solution must be correct in all!
• Reboot

– Host crashes, reboots, and must “clean up”
– i.e., want to wind up in correct state despite

reboot

25

Fixing Timeouts (1)

• Where in protocol do hosts wait for
messages?
– TC waits for “yes”/”no” from A and B
– A and B wait for “commit”/”abort” from TC

• Making progress when TC waits for “yes”/”no”
– TC not yet sent any “commit” messages
– TC can safely abort, send “abort” messages
– Preserved safety, sacrificed liveness (how?)
– Perhaps both A, B prepared to commit, but a “yes”

message was lost
– Could have committed, but TC unaware!
– Thus, TC is conservative

26

Timeouts (2): Progress when A or B
Times Out Awaiting “commit”/”abort”

• wlog, consider B (A case symmetric)
• If B voted “no”, can unilaterally abort; TC will

never send “commit” in this case
• What if B voted “yes”? Can B unilaterally

abort?
– No! e.g., TC might have received “yes” from both,

sent “commit” to A, then crashed before sending
“commit” to B

– Result: A would commit, B would abort; incorrect
(unsafe)!

• Can B unilaterally commit?
– No! A might have voted “no”

27

Timeouts (3): Progress when A or B
Times Out Awaiting “commit”/”abort”

• Blocking “solution”: B waits forever for
commit/abort from TC

• Better plan: termination protocol for B if
voted “yes”

28

Timeouts (4): Termination Protocol
When B Voted “yes”

• B sends “status” request message to A, asking if A
knows whether transaction should commit

• If no reply from A, no decision; wait for TC
• If A received “commit” or “abort” from TC, B decides

same way; can’t disagree with TC
• If A hasn’t voted “yes”/”no” yet, B and A both abort

– TC can’t have decided “commit”; will eventually hear from A or B
• If A voted “no”, B and A both abort

– TC can’t have decided “commit”
• If A voted “yes”, no decision possible!

– TC might have decided “commit” and replied to client
– TC might have timed out and aborted
– A and B must wait for TC

29

Timeout Termination Protocol Behavior

• Some timeouts can be resolved with
guaranteed correctness (safety)

• Sometimes, though, A and B must block
– When TC fails, or TC’s network connection

fails
– Remember: TC is entity with centralized

knowledge of A’s and B’s state

30

Problem: Crash-and-Reboot

• Cannot back out of commit once decided
• Suppose TC crashes just after deciding and

sending “commit”
– What if “commit” message to A or B lost?

• Suppose A and/or B crash just after sending
“yes”
– What if “yes” message to TC lost?

• If A or B reboots, doesn’t remember saying
“yes”, big trouble!
– Might change mind after reboot
– Even after everyone reboots, may not be able to

decide!

31

Crash-and-Reboot Solution:
Persistent State

• If all nodes know their pre-crash state,
can use previously described termination
protocol

• A and B can also ask TC, which may know
it committed

• Preserving state across crashes:
– Need non-volatile memory, e.g., a disk
– What order:

• write disk, then send “yes” message if A/B,
or “commit” if TC?

• or vice-versa?

32

Persistent State across Reboots (2)

• Cannot send message before writing disk
– Might then reboot between sending and

writing, and change mind after reboot
– e.g,. B might send “yes”, then reboot, then

decide “no”
• Can we write disk before sending

message?
– For TC, write “commit” to disk before sending
– For A/B, write “yes” to disk before sending

33

Revised Recovery Protocol using
Non-Volatile State

• TC: after reboot, if no “commit” on disk, abort
– No “commit” on disk means you didn’t send any

“commit” messages; safe
• A/B: after reboot, if no “yes” on disk, abort

– No “yes” on disk means you didn’t send any “yes”
messages, so no one could have committed; safe

• A/B: after reboot, if “yes” on disk, use ordinary
termination protocol
– Might block!

• If everyone rebooted and reachable, can still
decide!
– Just look at whether TC has “commit” on disk

34

Two-Phase Commit Protocol:
Summary of Properties

• “Prepare” and “commit” phases: Two-
Phase Commit (2PC)

• Properties:
– Safety: all hosts that decide reach same

decision
– Safety: no commit unless everyone says “yes”
– Liveness: if no failures and all say “yes,” then

commit
– Liveness: if failures, then repair, wait long

enough, eventually some decision

35

Two-Phase Commit Protocol:
Summary of Properties

• “Prepare” and “commit” phases: Two-
Phase Commit (2PC)

• Properties:
– Safety: all hosts that decide reach same

decision
– Safety: no commit unless everyone says “yes”
– Liveness: if no failures and all say “yes,” then

commit
– Liveness: if failures, then repair, wait long

enough, eventually some decision

Theorem [Fischer, Lynch, Paterson, 1985]:
no distributed asynchronous protocol can
correctly agree (provide both safety and
liveness) in presence of crash-failures (i.e., if
failures not repaired)

