Distributed Shared Memory:
Ivy

Brad Karp
UCL Computer Science

A

I

CS GZ03 / M030
13t October 2017

Increasing Transparency:
From RPC to Shared Memory

e In RPC, we've seen one way to split
application across multiple nodes

— Carefully specify interface between nodes
— Explicitly communicate between nodes
— Transparent to programmer?

e Can we hide all inter-node communication
from programmer, and improve
transparency?

— Today'’s topic: Distributed Shared Memory

Ivy: Distributed Shared Memory

e Supercomputer: super-expensive 100-CPU
machine, custom-built hardware

e Ivy: 100 cheap PCs and a LAN (all off-the-
shelf hardware!)

e Both offer same easy view for
programmer:

— single, shared memory, visible to all CPUs

Distributed Shared Memory: Problem

e An application has a shared address
space; all memory locations accessible to
all instructions

e Divide code for application into pieces,
assign one piece to each of several
computers on a LAN

e Fach computer has own separate memory

e Each piece of code may want to read or
write any part of data

e Where do you put the data?

Distributed Shared Memory: Solution

e Goal: create illusion that all boxes share single
memory, accessible by all

e Shared memory contents divided across nodes

— Programmer needn't explicitly communicate among
nodes

— Pool memory of all nodes into one shared memory

e Performance? Correctness?

— Far slower to read/write across LAN than read/write
from/to local (same host’'s) memory

— Remember NFS: caching should help
— Remember NFS: caching complicates consistency!

Context: Parallel Computation

o Still need to divide program code across
multiple CPUs

e Potential benefit: more total CPU power,
so faster execution

o Potential risk: how will we know if
distributed program executes correctly?

e To understand distributed shared memory,
must understand what “correct” execution
means...

Simple Case: Uniprocessor Correctness

e When you only have one processor, what
does “correct” mean?

e Define “correct” separately for each
Instruction

e Each instruction takes machine from one
state to another (e.g., ADD, LD, ST)

— LD should return value of most recent ST to
same memory address

Simple Case: Uniprocessor Correctness

@ “Correct” means:

_

Execution gives same result as if you ran one
instruction at a time, waiting for each to
complete

~

J

e Each instruction takes machine from one
state to another (e.g., ADD, LD, ST)

— LD should return value of most recent ST to
same memory address

Why Define Correctness?

e Programmers want to be able to predict how
CPU executes program!
— ...to write correct program

e Note that modern CPUs don't execute
instructions one-at-a-time in program order
— Multiple instruction issue
— Out-of-order instruction issue

e Nevertheless, CPUs must behave such that they
obey uniprocessor correctness!

Distributed Correctness:
Naive Shared Memory

e Suppose we have multiple hosts with (for
now) naive shared memory

— 3 hosts, each with one CPU, connected by
Internet

— Each host has local copy of all memory
— Reads local, so very fast

— Writes sent to other hosts (and execution
continues immediately)

e Is naive shared memory correct?

10

Example 1: Mutual Exclusion

Initialization: x =y = 0 on both CPUs

CPUO: CPU1:
X =1 y =1,
if (y == 0) if (x == 0)
critical section; critical section;

e Why is code correct?

— If CPUO sees y == 0, CPU1 can’t have executed "y =
1"

— So CPU1 will see x == 1, and can't enter critical
section 11

Example 1: Mutual Exclusion

Initialization: x = y = 0 on both CPUs

CPUO: CPU1:
X =1 y =1,
if (y ==0) if (x == 0)
critical section; critical section;

" So CPUO and CPU1 cannot simultaneously

.

enter critical section

1::
— So CPU1 will see x == 1, and can't enter critical
section

12

Naive Distributed Memory:
Incorrect for Example 1

e Problem A:
— CPUO sends “write x=1", reads local 'y == 0"
— CPUL1 reads local “x == 0" before write arrives

e Local memory and slow writes cause
disagreement about read/write order!

— CPUO thinks its “"x = 1" was before CPU1's
read of X

— CPU1 thinks its read of x was before arrival of
“writex = 1"
e Both CPUO and CPU1 enter critical section!

13

Example 2:
Data Dependencies

CPUO:
v0 = f0();
donel = true;

CPU1:
while (done0 == false)

vl = f1(v0);
donel = true;

CPU2:
while (donel == false)

/4

v2 = f2(v0, v1);

14

Example 2:
Data Dependencies

CPUO:
vO = fO();
donel = true;

CPU1:
while (done0 == false)

vl = f1(v0);
donel = true;

CPU2:
while (donel == false)

/4

v2 = f2(v0, v1);

4 Intent:

CPU2 should run f2() with
results from CPUO and CPU1

Waiting for CPU1 implies
waiting for CPUO

.

Naive Distributed Memory:
Incorrect for Example 2

e Problem B:

— CPUOQ’s writes of vO and done0 may be
reordered by network, leaving vO unset, but
done0 true

e But even if each CPU sees each other
CPU'’s writes in issue order...

e Problem C:
— CPU2 sees CPU1’s writes before CPUQ’s writes

—i.e., CPU2 and CPU1 disagree on order of
CPUOQ’s and CPU1'’s writes

16

Naive Distributed Memory:
Incorrect for Example 2

e Problem B:

: Naive distributed memory isn’t correct

(Or we shouldn’t expect code like these

examples to work...)
e

CPU’s writes in issue order...
e Problem C:

— CPU2 sees CPU1’s writes before CPUQ’s writes

—i.e., CPU2 and CPU1 disagree on order of
CPUOQ’s and CPU1'’s writes

17

Distributed Correctness:
Consistency Models

e How can we write correct distributed
programs with shared storage?

e Need to define rules that memory system
will follow

e Need to write programs with these rules in
mind
e Rules are a consistency model

e Build memory system to obey model;
programs that assume model then correct

18

How Do We Choose a
Consistency Model?

e No such thing as “right” or “wrong” model
— All models are artificial definitions

e Different models may be harder or easier
to program for

— Some models produce behavior that is more
intuitive than others

e Different models may be harder or easier
to implement efficiently

— Performance vs. semantics trade-off, as with
NFS/RPC

19

Back to Ivy:
What's It Good For?

e Suppose you've got 100 PCs on a LAN and
shared memory across all of them

e Fast, parallel sorting program:
Load entire array into shared memory
Each PC processes one section of array
On PC i:

sort own piece of array
done[i] = true;
wait for all done[] to be true

merge my piece of array with my neighbors'...
20

Partitioning Address Space:
Fixed Approach

e Fixed approach:
— First MB on host 0, 2" on host 1, &c.

— Send all reads and writes to “owner” of
address

— Each CPU read- and write-protects pages in
address ranges held by other CPUs

e Detect reads and writes to remote pages with VM
hardware

o What if we placed pages on hosts poorly?

e Can't always predict which hosts will use
which pages

21

Partitioning Address Space:
Dynamic, Single-Copy Approach

e Move the page to the reading/writing CPU
each time it is used

e CPU trying to read or write must find
current owner, then take page from it

e Requires mechanism to find current
location of page

e What if many CPUs read same page?

22

Partitioning Address Space:
Dynamic, Multi-Copy Approach

e Move page for writes, but allow read-only
copies

e When CPU reads page it doesn’t have in
its own local memory, find other CPU that
most recently wrote to page

o Works if pages are read-only and shared
or read-write by one host

e Bad case: write sharing

— When does write sharing occur?
— False sharing, too...

23

Simple Ivy:
Centralized Manager (Section 3.1)

lock | access | owner? ° ptab|e (a” CPUS)
CPUO access: R, W, or nil
owner: T or F

e info (MGR only)

lock | access | owner? copy_set: list of
CPUs with read-
CpPU1 only copies

owner: CPU that
can write page

lock | access | owner? lock copy_set | owner

ptable info 24

Centralized Manager (2):
Message Types Between CPUs

RQ (read query, reader to MGR)

RF (read forward, MGR to owner)

RD (read data, owner to reader)

RC (read confirm, reader to MGR)

WQ (write query, writer to MGR)

IV (invalidate, MGR to copy_set)

IC (invalidate confirm, copy_set to MGR)
WEF (write forward, MGR to owner)

WD (write data, owner to writer)

WC (write confirm, writer to MGR)

25

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

CPU1

lock access | owner?
F W T

lock access | owner?
F nil F

lock access | owner?
F nil F

ptable

lock copy_set | owner
F {} CPUO
info 26

Centralized Manager Example 1:
Owned by CPUO, CPU1 wants to read

lock access | owner?

CPUO F W T

lock access | owner?

CP—;;l I ‘ ' F nil F

lock | access | owner? lock copy_set | owner

F nil F F {} CPUO

ptable info 27

Centralized Manager Example 1:
Owned by CPUO, CPU1 wants to read

lock access | owner?

CPUO F W T

lock access | owner?

CP—;;l I ‘ ' T nil F

lock | access | owner? lock copy_set | owner

F nil F F {} CPUO

ptable info 28

Centralized Manager Example 1:
Owned by CPUO, CPU1 wants to read

lock access | owner?

CPUO F W T

lock access | owner?

CP—;;l I ‘ ' T nil F

RQ

lock | access | owner? lock copy_set | owner

_ F nil F F {} CPUO

ptable info 29

Centralized Manager Example 1:
Owned by CPUO, CPU1 wants to read

lock access | owner?

CPUO F W T

lock access | owner?

CP—;;l I ‘ ' T nil F

RQ

lock | access | owner? lock copy_set | owner

_ F nil F T {} CPUO

ptable info 30

Centralized Manager Example 1:
Owned by CPUO, CPU1 wants to read

lock access | owner?

CPUO F W T

lock access | owner?

CP—;;l I ‘ ' T nil F

RQ

lock | access | owner? lock copy_set | owner

_ F nil F T {CPU1} | CPUO

ptable info 31

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

4
\

F
RQ

lock access | owner?
F W T

lock access | owner?
T nil F

lock access | owner?
F nil F

lock

copy_set

owner

{CPU1}

CPUO

ptable

info

32

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

4
\

F
RQ

lock access | owner?
T W T

lock access | owner?
T nil F

lock access | owner?
F nil F

lock

copy_set

owner

{CPU1}

CPUO

ptable

info

33

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

4
\

F
RQ

lock access | owner?
T R T

lock access | owner?
T nil F

lock access | owner?
F nil F

lock

copy_set

owner

{CPU1}

CPUO

ptable

info

34

Centralized Manager Example 1:
Owned by CPUO, CPU1 wants to read

CPUO

[

>RD

C
éq
ez men

lock access | owner?
T R T

lock access | owner?
T nil F

lock access | owner?
F nil F

lock

copy_set

owner

{CPU1}

CPUO

ptable

info

35

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

RD
RF

\RQ

lock access | owner?
F R T

lock access | owner?
nil F

lock access | owner?
F nil F

lock

copy_set

owner

{CPU1}

CPUO

ptable

info

36

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

RD
RF

lock access | owner?
F R T
lock access | owner?
T nil F
access | owner?
F nil F

lock

copy_set

owner

cpu*"

{CPU1}

CPUO

ptable

info

37

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

RD
RF

lock access | owner?
F R T
lock access | owner?
T R F
access | owner?
F nil F

lock

copy_set

owner

cpu*"

{CPU1}

CPUO

ptable

info

38

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

RD
RF

lock access | owner?
F R T
lock access | owner?
F R F
access | owner?
F nil F

lock

copy_set

owner

cpu*"

{CPU1}

CPUO

ptable

info

39

Centralized Manager Example 1:

Owned by CPUO, CPU1 wants to read

CPUO

RD
RF

lock access | owner?
F R T
lock access | owner?
F R F
access | owner?
F nil F

lock

copy_set

owner

cpu*"

{CPU1}

CPUO

ptable

info

40

Centralized Manager Example 2:

Owned by CPUO, CPU2 wants to write

CPUO

CPU1

lock access | owner?
F R T
lock access | owner?
F R F
access | owner?
nil F

ptable

lock copy_set | owner
F {CPU1} | CPUO
info 41

Centralized Manager Example 2:

Owned by CPUO, CPU2 wants to write

CPUO

CPU1

lock access | owner?
F R T
lock access | owner?
F R F
access | owner?
nil F

ptable

lock copy_set | owner
F {CPU1} | CPUO
info 42

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write
lock | access | owner?

CPUO F R T

lock access | owner?

CPU1 F R F

access | owner? lock copy_set | owner

nil F F | {CPU1}| CPUO

wQ ptable info 43

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write
lock | access | owner?

CPUO F R T

lock access | owner?

CPU1 F R F

access | owner? lock copy_set | owner

nil F T | {CPU1}| CPUO

wQ ptable info 44

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write
lock | access | owner?

CPUO F R T

lock access | owner?

CPU1 F R F

access | owner? lock copy_set | owner

nil F T | {CPU1}| CPUO

wQ ptable info 45

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write
lock | access | owner?

CPUO F R T

lock access | owner?

CPU1 T nil F

access | owner? lock copy_set | owner

nil F T | {CPU1}| CPUO

wQ ptable info 46

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write
lock | access | owner?

CPUO F R T

lock access | owner?

CPU1 T nil F

access | owner? lock copy_set | owner

nil F T | {CPU1}| CPUO

wQ ptable info 47

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write
lock | access | owner?

CPUO F R T

lock access | owner?

CPU1 F nil F

access | owner? lock copy_set | owner

nil F T o | cpuo

wQ ptable info 48

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write

CPUO

WF

CPU1

lock access | owner?
F R T
lock access | owner?
F nil F
access | owner?
nil F

ptable

lock copy_set | owner
T {} CPUO
info 49

Centralized Manager Example 2:
Owned by CPUO, CPU2 wants to write

CPUO

WF

CPU1

lock access | owner?
T nil F
lock access | owner?
F nil F
access | owner?
nil F

ptable

lock copy_set | owner
T {} CPUO
info 50

Centralized Manager Example 2:

Owned by CPUO, CPU2 wants to write

CPUO

WD

lock

dCCESS

owner?

nil

dCCesSS

nil

dCCeSS

nil

ptable

lock copy_set | owner
T {} CPUO
info 51

Centralized Manager Example 2:

Owned by CPUO, CPU2 wants to write

CPUO

WD

lock

dCCESS

owner?

nil

dCCesSS

nil

dCCeSS

W

ptable

lock copy_set | owner
T {} CPUO
info 52

Centralized Manager Example 2:

Owned by CPUO, CPU2 wants to write

CPUO

WD

lock

dCCESS

owner?

nil

dCCesSS

nil

dCCeSS

W

ptable

lock copy_set | owner
T {} CPUO
info 53

Centralized Manager Example 2:

Owned by CPUO, CPU2 wants to write

CPUO

WD

lock

dCCESS

owner?

nil

dCCesSS

nil

dCCeSS

W

ptable

lock copy_set | owner
T {} CPU2
info 54

What if Two CPUs Want to Write to
Same Page at Same Time?

o Write has several steps, modifies multiple
tables

e Invariants for tables:

— MGR must agree with CPUs about single
owner

— MGR must agree with CPUs about copy_set

— copy_set = {} must agree with read-only for
owner

e Write operation should thus be atomic!
e What enforces atomicity?

55

Ivy and Consistency Models

e Consider done{0,1,2} example:
—v0 = fn0(); donel = true

— In Ivy, can other CPU see done0 ==
true, but still see old v0?

e Does Ivy obey sequential
consistency?
— Yes!
— Each CPU does R/W in program order

— Each memory location does R/W In
arrival order

56

Ivy: Evaluation

e Experiments include performance of PDE,
matrix multiplication, and “block odd-even
based merge-split algorithm”

e How to measure performance?

— Speedup: x-axis is number of CPUs used, y-
axis is how many times faster the program
ran with that many CPUs

e What's the best speedup you should
ever expect?

— Linear

57

Ivy: Evaluation

e Experiments include performance of PDE,
matrix multiplication, and “block odd-even
based merge-split algorithm”

e How to measure performance?

— Speedup: x-axis is number of CPUs used, y-
axis is how many times faster the program
ran with that many CPUs

e What's the best speedup you should
ever expect?

[When do you expect speedup to be linear?]

58

What's "Block Odd-Even Based Merge-
Split Algorithm?”

e Partition data to be sorted over N CPUs, held in
one shared array

e Sort data in each CPU locally
e View CPUs as in a line, number 0 to N-1

e Repeat N times:

— Even CPUs send to (higher) odd CPUs

— Odd CPUs merge, send lower half back to even CPUs
— Odd CPUs send to (higher) even CPUs

— Even CPUs merge, send lower half back to odd CPUs

e "Send” just means “receiver reads from right
place in shared memory”

59

Ivy’s Speedup

e PDE and matrix multiplication: linear

e Sorting: worse than linear, flattens
significantly beyond 2 CPUs

60

Ivy vs. RPC

e When would you prefer DSM to RPC?

— More transparent
— Easier to program for

e When would you prefer RPC to DSM?
— Isolation
— Control over communication

— Latency-tolerance
— Portability

e Could Ivy benefit from RPC?
— Possibly for efficient blocking/unblocking

61

DSM: Successful Idea?

e Spreading a computation across
workstations?

— Yes! Google, Inktomi, Beowulf, ...

e Coherent access to shared memory?

— Yes! Multi-CPU PCs use Ivy-like protocols for
cache coherence between CPUs

e DSM as model for programming
workstation cluster?
— Little evidence of broad adoption

— Too little control over communication, and
communication dictates performance 62

