
Distributed Shared Memory:
Ivy

Brad Karp
UCL Computer Science

CS GZ03 / M030
13th October 2017



2

Increasing Transparency:
From RPC to Shared Memory

• In RPC, we’ve seen one way to split 
application across multiple nodes
– Carefully specify interface between nodes
– Explicitly communicate between nodes
– Transparent to programmer?

• Can we hide all inter-node communication 
from programmer, and improve 
transparency?
– Today’s topic: Distributed Shared Memory



3

Ivy: Distributed Shared Memory

• Supercomputer: super-expensive 100-CPU 
machine, custom-built hardware

• Ivy: 100 cheap PCs and a LAN (all off-the-
shelf hardware!)

• Both offer same easy view for 
programmer:
– single, shared memory, visible to all CPUs



4

Distributed Shared Memory: Problem

• An application has a shared address 
space; all memory locations accessible to 
all instructions

• Divide code for application into pieces, 
assign one piece to each of several 
computers on a LAN

• Each computer has own separate memory
• Each piece of code may want to read or 

write any part of data
• Where do you put the data?



5

Distributed Shared Memory: Solution

• Goal: create illusion that all boxes share single 
memory, accessible by all

• Shared memory contents divided across nodes
– Programmer needn’t explicitly communicate among 

nodes
– Pool memory of all nodes into one shared memory

• Performance? Correctness?
– Far slower to read/write across LAN than read/write 

from/to local (same host’s) memory
– Remember NFS: caching should help
– Remember NFS: caching complicates consistency!



6

Context: Parallel Computation

• Still need to divide program code across 
multiple CPUs

• Potential benefit: more total CPU power, 
so faster execution

• Potential risk: how will we know if 
distributed program executes correctly?

• To understand distributed shared memory, 
must understand what “correct” execution 
means…



7

Simple Case: Uniprocessor Correctness

• When you only have one processor, what 
does “correct” mean?

• Define “correct” separately for each 
instruction

• Each instruction takes machine from one 
state to another (e.g., ADD, LD, ST)
– LD should return value of most recent ST to 

same memory address



8

Simple Case: Uniprocessor Correctness

• When you only have one processor, what 
does “correct” mean?

• Define “correct” separately for each 
instruction

• Each instruction takes machine from one 
state to another (e.g., ADD, LD, ST)
– LD should return value of most recent ST to 

same memory address

“Correct” means:
Execution gives same result as if you ran one 
instruction at a time, waiting for each to 
complete



9

Why Define Correctness?

• Programmers want to be able to predict how 
CPU executes program!
– …to write correct program

• Note that modern CPUs don’t execute 
instructions one-at-a-time in program order
– Multiple instruction issue
– Out-of-order instruction issue

• Nevertheless, CPUs must behave such that they 
obey uniprocessor correctness!



10

Distributed Correctness:
Naïve Shared Memory

• Suppose we have multiple hosts with (for 
now) naïve shared memory
– 3 hosts, each with one CPU, connected by 

Internet
– Each host has local copy of all memory
– Reads local, so very fast
– Writes sent to other hosts (and execution 

continues immediately)
• Is naïve shared memory correct?



11

Example 1: Mutual Exclusion

CPU0:
x = 1;
if (y == 0)

critical section;

CPU1:
y = 1;
if (x == 0)

critical section;
• Why is code correct?

– If CPU0 sees y == 0, CPU1 can’t have executed “y = 
1”

– So CPU1 will see x == 1, and can’t enter critical 
section

Initialization: x = y = 0 on both CPUs



12

Example 1: Mutual Exclusion

CPU0:
x = 1;
if (y == 0)

critical section;

CPU1:
y = 1;
if (x == 0)

critical section;
• Why is code correct?

– If CPU0 sees y == 0, CPU1 can’t have executed “y = 
1”

– So CPU1 will see x == 1, and can’t enter critical 
section

Initialization: x = y = 0 on both CPUs

So CPU0 and CPU1 cannot simultaneously 
enter critical section



13

Naïve Distributed Memory:
Incorrect for Example 1

• Problem A:
– CPU0 sends “write x=1”, reads local “y == 0”
– CPU1 reads local “x == 0” before write arrives

• Local memory and slow writes cause 
disagreement about read/write order!
– CPU0 thinks its “x = 1” was before CPU1’s 

read of x
– CPU1 thinks its read of x was before arrival of 

“write x = 1”
• Both CPU0 and CPU1 enter critical section!



14

Example 2:
Data Dependencies

CPU0:
v0 = f0();
done0 = true;

CPU1:
while (done0 == false)

;
v1 = f1(v0);
done1 = true;

CPU2:
while (done1 == false)

;
v2 = f2(v0, v1);



15

Example 2:
Data Dependencies

CPU0:
v0 = f0();
done0 = true;

CPU1:
while (done0 == false)

;
v1 = f1(v0);
done1 = true;

CPU2:
while (done1 == false)

;
v2 = f2(v0, v1);

Intent:
CPU2 should run f2() with 
results from CPU0 and CPU1
Waiting for CPU1 implies 
waiting for CPU0



16

Naïve Distributed Memory:
Incorrect for Example 2

• Problem B:
– CPU0’s writes of v0 and done0 may be 

reordered by network, leaving v0 unset, but 
done0 true

• But even if each CPU sees each other 
CPU’s writes in issue order…

• Problem C:
– CPU2 sees CPU1’s writes before CPU0’s writes
– i.e., CPU2 and CPU1 disagree on order of 

CPU0’s and CPU1’s writes



17

Naïve Distributed Memory:
Incorrect for Example 2

• Problem B:
– CPU0’s writes of v0 and done0 may be 

reordered by network, leaving v0 unset, but 
done0 true

• But even if each CPU sees each other 
CPU’s writes in issue order…

• Problem C:
– CPU2 sees CPU1’s writes before CPU0’s writes
– i.e., CPU2 and CPU1 disagree on order of 

CPU0’s and CPU1’s writes

Naïve distributed memory isn’t correct
(Or we shouldn’t expect code like these 
examples to work…)



18

Distributed Correctness:
Consistency Models

• How can we write correct distributed 
programs with shared storage?

• Need to define rules that memory system 
will follow

• Need to write programs with these rules in 
mind

• Rules are a consistency model
• Build memory system to obey model; 

programs that assume model then correct



19

How Do We Choose a
Consistency Model?

• No such thing as “right” or “wrong” model
– All models are artificial definitions

• Different models may be harder or easier 
to program for
– Some models produce behavior that is more 

intuitive than others
• Different models may be harder or easier 

to implement efficiently
– Performance vs. semantics trade-off, as with 

NFS/RPC



20

Back to Ivy:
What’s It Good For?

• Suppose you’ve got 100 PCs on a LAN and 
shared memory across all of them

• Fast, parallel sorting program:
Load entire array into shared memory
Each PC processes one section of array
On PC i:

sort own piece of array
done[i] = true;
wait for all done[] to be true
merge my piece of array with my neighbors’…



21

Partitioning Address Space:
Fixed Approach

• Fixed approach:
– First MB on host 0, 2nd on host 1, &c.
– Send all reads and writes to “owner” of 

address
– Each CPU read- and write-protects pages in 

address ranges held by other CPUs
• Detect reads and writes to remote pages with VM 

hardware
• What if we placed pages on hosts poorly?
• Can’t always predict which hosts will use 

which pages



22

Partitioning Address Space:
Dynamic, Single-Copy Approach

• Move the page to the reading/writing CPU 
each time it is used

• CPU trying to read or write must find 
current owner, then take page from it

• Requires mechanism to find current 
location of page

• What if many CPUs read same page?



23

Partitioning Address Space:
Dynamic, Multi-Copy Approach

• Move page for writes, but allow read-only 
copies

• When CPU reads page it doesn’t have in 
its own local memory, find other CPU that 
most recently wrote to page

• Works if pages are read-only and shared
or read-write by one host

• Bad case: write sharing
– When does write sharing occur?
– False sharing, too…



24

Simple Ivy:
Centralized Manager (Section 3.1)

CPU0

CPU1

CPU2 / MGR

lock access owner?

lock access owner?

lock access owner?

lock copy_set owner

ptable info

• ptable (all CPUs)
access: R, W, or nil
owner: T or F

• info (MGR only)
copy_set: list of 

CPUs with read-
only copies

owner: CPU that 
can write page



25

Centralized Manager (2):
Message Types Between CPUs

• RQ (read query, reader to MGR)
• RF (read forward, MGR to owner)
• RD (read data, owner to reader)
• RC (read confirm, reader to MGR)
• WQ (write query, writer to MGR)
• IV (invalidate, MGR to copy_set)
• IC (invalidate confirm, copy_set to MGR)
• WF (write forward, MGR to owner)
• WD (write data, owner to writer)
• WC (write confirm, writer to MGR)



26

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
F {} CPU0

…
ptable info



27

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
F {} CPU0

…
ptable info

read



28

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
F {} CPU0

…
ptable info

read



29

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
F {} CPU0

…
ptable info

read

RQ



30

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
T {} CPU0

…
ptable info

read

RQ



31

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ



32

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF



33

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
T W T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF



34

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
T R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF



35

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
T R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF
RD



36

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF
RD



37

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
F nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF
RD

RC



38

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
T R F

…

lock access owner?
F nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF
RD

RC



39

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
F nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

read

RQ

RF
RD

RC



40

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
F nil F

…

lock access owner?
F R T

…

lock copy_set owner
F {CPU1} CPU0

…
ptable info

read

RQ

RF
RD

RC



41

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
F nil F

…

lock access owner?
F R T

…

lock copy_set owner
F {CPU1} CPU0

…
ptable info

write



42

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
F {CPU1} CPU0

…
ptable info

write



43

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
F {CPU1} CPU0

…
ptable info

write

WQ



44

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

write

WQ



45

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F R F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

write

WQ

IV



46

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

write

WQ

IV



47

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
T nil F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {CPU1} CPU0

…
ptable info

write

WQ

IV
IC



48

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {} CPU0

…
ptable info

write

WQ

IV
IC



49

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
T nil F

…

lock access owner?
F R T

…

lock copy_set owner
T {} CPU0

…
ptable info

write

WQ

IV
IC

WF



50

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
T nil F

…

lock access owner?
T nil F

…

lock copy_set owner
T {} CPU0

…
ptable info

write

WQ

IV
IC

WF



51

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
T nil F

…

lock access owner?
T nil F

…

lock copy_set owner
T {} CPU0

…
ptable info

write

WQ

IV
IC

WF

WD



52

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
T W T

…

lock access owner?
F nil F

…

lock copy_set owner
T {} CPU0

…
ptable info

write

WQ

IV
IC

WF

WD



53

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
T W T

…

lock access owner?
F nil F

…

lock copy_set owner
T {} CPU0

…
ptable info

write

WQ

IV
IC

WF

WD

WC



54

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?
F nil F

…

lock access owner?
F W T

…

lock access owner?
F nil F

…

lock copy_set owner
T {} CPU2

…
ptable info

write

WQ

IV
IC

WF

WD

WC



55

What if Two CPUs Want to Write to 
Same Page at Same Time?

• Write has several steps, modifies multiple 
tables

• Invariants for tables:
– MGR must agree with CPUs about single 

owner
– MGR must agree with CPUs about copy_set
– copy_set != {} must agree with read-only for 

owner
• Write operation should thus be atomic!
• What enforces atomicity?



56

Ivy and Consistency Models

• Consider done{0,1,2} example:
– v0 = fn0(); done0 = true
– In Ivy, can other CPU see done0 == 

true, but still see old v0?
• Does Ivy obey sequential 

consistency?
– Yes!
– Each CPU does R/W in program order
– Each memory location does R/W in 

arrival order



57

Ivy: Evaluation

• Experiments include performance of PDE, 
matrix multiplication, and “block odd-even 
based merge-split algorithm”

• How to measure performance?
– Speedup: x-axis is number of CPUs used, y-

axis is how many times faster the program 
ran with that many CPUs

• What’s the best speedup you should 
ever expect?
– Linear



58

Ivy: Evaluation

• Experiments include performance of PDE, 
matrix multiplication, and “block odd-even 
based merge-split algorithm”

• How to measure performance?
– Speedup: x-axis is number of CPUs used, y-

axis is how many times faster the program 
ran with that many CPUs

• What’s the best speedup you should 
ever expect?
– LinearWhen do you expect speedup to be linear?



59

What’s “Block Odd-Even Based Merge-
Split Algorithm?”

• Partition data to be sorted over N CPUs, held in 
one shared array

• Sort data in each CPU locally
• View CPUs as in a line, number 0 to N-1
• Repeat N times:

– Even CPUs send to (higher) odd CPUs
– Odd CPUs merge, send lower half back to even CPUs
– Odd CPUs send to (higher) even CPUs
– Even CPUs merge, send lower half back to odd CPUs

• “Send” just means “receiver reads from right 
place in shared memory”



60

Ivy’s Speedup

• PDE and matrix multiplication: linear
• Sorting: worse than linear, flattens 

significantly beyond 2 CPUs



61

Ivy vs. RPC

• When would you prefer DSM to RPC?
– More transparent
– Easier to program for

• When would you prefer RPC to DSM?
– Isolation
– Control over communication
– Latency-tolerance
– Portability

• Could Ivy benefit from RPC?
– Possibly for efficient blocking/unblocking



62

DSM: Successful Idea?

• Spreading a computation across 
workstations?
– Yes! Google, Inktomi, Beowulf, …

• Coherent access to shared memory?
– Yes! Multi-CPU PCs use Ivy-like protocols for 

cache coherence between CPUs
• DSM as model for programming 

workstation cluster?
– Little evidence of broad adoption
– Too little control over communication, and

communication dictates performance


