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Outline

• Authenticating users
– Local users: hashed passwords
– Remote users: s/key
– Unexpected covert channel: the Tenex password-

guessing attack
• Symmetric-key-cryptography
• Public-key cryptography usage model
• RSA algorithm for public-key cryptography

– Number theory background
– Algorithm definition
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Dictionary Attack on Hashed Password 
Databases

• Suppose hacker obtains copy of password file 
(until recently, world-readable on UNIX)

• Compute H(x) for 50K common words
• String compare resulting hashed words against 

passwords in file
• Learn all users’ passwords that are 

common English words after only 50K 
computations of H(x)!

• Same hashed dictionary works on all 
password files in world!
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Salted Password Hashes

• Generate a random string of bytes, r
• For user password x, store [H(r,x), r] in 

password file
• Result: same password produces different result 

on every machine
– So must see password file before can hash dictionary
– …and single hashed dictionary won’t work for multiple 

hosts
• Modern UNIX: password hashes salted; hashed 

password database readable only by root
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Salted Password Hashes

• Generate a random string of bytes, r
• For user password x, store [H(r,x), r] in 

password file
• Result: same password produces different result 

on every machine
– So must see password file before can hash dictionary
– …and single hashed dictionary won’t work for multiple 

hosts
• Modern UNIX: password hashes salted; hashed 

password database readable only by root

Dictionary attack still possible after attacker 
sees password file!
Users should pick passwords that aren’t close 
to dictionary words.
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Tenex Password Attack:
An Information Leak

• Tenex OS stored directory passwords in
cleartext

• OS supported system call:
– pw_validate(directory, pw)

• Implementation simply compared pw to stored 
password in directory, char by char

• Clever attack:
– Make pw span two VM pages, put 1st char of guess in 

first page, rest of guess in second page
– See whether get a page fault—if not, try next value 

for 1st char, &c.; if so, first char correct!
– Now position 2nd char of guess at end of 1st page, &c.
– Result: guess password in time linear in length!
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Tenex Password Attack:
An Information Leak

• Tenex OS stored directory passwords in
cleartext

• OS supported system call:
– pw_validate(directory, pw)

• Implementation simply compared pw to stored 
password in directory, char by char

• Clever attack:
– Make pw span two VM pages, put 1st char of guess in 

first page, rest of guess in second page
– See whether get a page fault—if not, try next value 

for 1st char, &c.; if so, first char correct!
– Now position 2nd char of guess at end of 1st page, &c.
– Result: guess password in time linear in length!

Lessons:
Don’t store passwords in cleartext.
Information leaks are real, and can be 
extremely difficult to find and eliminate.
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Remote User Authentication

• Consider the case where Alice wants to log in 
remotely, across LAN or WAN from server

• Suppose network links can be eavesdropped by 
adversary, Eve

• Want scheme immune to replay: if Eve 
overhears messages, shouldn’t be able to log in 
as Alice by repeating them to server

• Clear non-solutions:
– Alice logs in by sending {alice, password}
– Alice logs in by sending {alice, H(password)}
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Remote User Authentication (2)

• Desirable properties:
– Message from Alice must change 

unpredictably at each login
– Message from Alice must be verifiable at 

server as matching secret value known only 
to Alice

• Can we achieve these properties using 
only a cryptographic hash function?
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Remote User Authentication: s/key

• Denote by Hn(x) n successive applications of 
cryptographic hash function H() to x
– i.e., H3(x) = H(H(H(x)))

• Store in server’s user database:
alice:99:H99(password)

• At first login, Alice sends:
{alice, H98(password)}

• Server then updates its database to contain:
alice:98:H98(password)

• At next login, Alice sends:
{alice, H97(password)}
– and so on…
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Properties of s/key

• Just as with any hashed password 
database, Alice must store her secret on 
the server securely (best if physically at 
server’s console)

• Alice must choose total number of logins
at time of storing secret

• When logins all “used”, must store new 
secret on server securely again
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Secrecy through Symmetric Encryption

• Two functions: E() encrypts, D() decrypts
• Parties share secret key K
• For message M:

– E(K, M) à C
– D(K, C) à M

• M is plaintext; C is ciphertext
• Goal: attacker cannot derive M from C 

without K
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Idealized Symmetric Encryption:
One-Time Pad

• Secretly share a truly random bit string P 
at sender and receiver

• Define     as bit-wise XOR
• C = E(M) = M    P
• M = D(C) = C    P
• Use bits of P only once; never use them 

again!
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Stream Ciphers:
Pseudorandom Pads

• Generate pseudorandom bit sequence (stream) 
at sender and receiver from short key

• Encrypt and decrypt by XOR’ing message with 
sequence, as with one-time pad

• Most widely used stream cipher: RC4
• Again, never, ever re-use bits from 

pseudorandom sequence!
• What’s wrong with reusing the stream?

– Alice à Server: c1 = E(s, “Visa card number”)
– Server à Alice: c2 = E(s, “Transaction confirmed”)
– Suppose Eve hears both messages
– Eve can compute:

m = c1 c2 “Transaction confirmed”
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Symmetric Encryption: Block Ciphers

• Divide plaintext into fixed-size blocks
(typically 64 or 128 bits)

• Block cipher maps each plaintext block to 
same-length ciphertext block

• Best today to use AES (others include 
Blowfish, DES, …)

• Of course, message of arbitrary length; 
how to encrypt message of more than one 
block?
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Using Block Ciphers: ECB Mode

• Electronic Code Book method
• Divide message M into blocks of cipher’s 

block size
• Simply encrypt each block individually

using the cipher
• Send each encrypted block to receiver
• Presume cipher provides secrecy, so 

attacker cannot decrypt any block
• Does ECB mode provide secrecy?
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Avoid ECB Mode!

• ECB mode does not provide robust secrecy!
• What if there are repeated blocks in the 

plaintext? Repeated as-is in ciphertext!
• What if sending sparse file, with long runs of 

zeroes? Non-zero regions obvious!
• WW II U-Boat example (Bob Morris):

– Each day at same time, when no news, send 
encrypted message: “Nichts zu melden.”

– When there’s news, send the news at that time.
– Obvious when there’s news
– Many, many ciphertexts of same known plaintext 

made available to adversary for cryptanalysis—a 
worry even if encryptions of same plaintext produce 
different ciphertexts!
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Using Block Ciphers: CBC Mode

• Better plan: make encryptions of successive 
blocks depend on one another, and initialization 
vector known to receiver
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Integrity with Symmetric Crypto:
Message Authentication Codes

• How does receiver know if message modified en 
route?

• Message Authentication Code:
– Sender and receiver share secret key K
– On message M, v = MAC(K, M)
– Attacker cannot produce valid {M, v} without K

• Append MAC to message for tamper-resistance:
– Sender sends {M, MAC(K, M)}
– M could be ciphertext, M = E(K’, m)
– Receiver of {M, v} can verify that v = MAC(K, M)

• Beware replay attacks—replay of prior {M, v} by 
Eve!
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HMAC: A MAC Based on Cryptographic 
Hash Functions

• HMAC(K, M) =
H(K   opad . H(K   ipad . M))

• where:
– . denotes string concatenation
– opad = 64 repetitions of 0x36
– ipad = 64 repetitions of 0x5c
– H() is a cryptographic hash function, like SHA-

256
• Fixed-size output, even for long messages
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Public-Key Encryption: Interface

• Two keys:
– Public key: K, published for all to see
– Private (or secret) key: K-1, kept secret

• Encryption: E(K, M) à {M}K
• Decryption: D(K-1, {M}K) à M
• Provides secrecy, like symmetric encryption:

– Can’t derive M from {M}K without knowing K-1

• Same public key used by all to encrypt all 
messages to same recipient
– Can’t derive K-1 from K
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Number Theory Background:
Modular Arithmetic Primer (1)

• Recall the “mod” operator: returns 
remainder left after dividing one integer 
by another, the modulus
– e.g., 15 mod 6 = 3

• That is:
a mod n = r

which just means
a = kn + r for some integers k and r

• Note that 0 <= r < n
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Modular Arithmetic Primer (2)

• In modular arithmetic, constrain range of 
integers to be only the residues [0, n-1], for 
modulus n
– e.g., (12 + 13) mod 24 = 1
– We may also write

• Modular arithmetic retains familiar properties: 
commutative, associative, distributive

• Same results whether mod taken at each 
arithmetic operation, or only at end, e.g.:
(a + b) mod n = ((a mod n) + (b mod n)) mod n
(ab) mod n = (a mod n)(b mod n) mod n

  

€ 

12 +13 ≡1 (mod 24)
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Modular Arithmetic: Advantages

• Limits precision required: working mod n, 
where n is k bits long, any single 
arithmetic operation yields at most 2k bits
– …so results of even seemingly expensive ops, 

like exponentiation (ax) fit in same number of 
bits as original operand(s)

– Lower precision means faster arithmetic
• Some operations in modular arithmetic are 

computationally very difficult:
– e.g., computing discrete logarithms:

find integer x s.t. n) (mod bax º
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Modular Arithmetic: Advantages

• Limits precision required: working mod n, 
where n is k bits long, any single 
arithmetic operation yields at most 2k bits
– …so results of even seemingly expensive ops, 

like exponentiation (ax) fit in same number of 
bits as original operand(s)

– Lower precision means faster arithmetic
• Some operations in modular arithmetic are 

computationally very difficult:
– e.g., computing discrete logarithms:

find integer x s.t. n) (mod bax º

Cryptography leverages “difficult” 
operations; want reversing encryption 
without key to be computationally 
intractable!
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Modular Arithmetic: Inverses (1)

• In real arithmetic, every integer has a 
multiplicative inverse—its reciprocal—and 
their product is 1
– e.g., 7x = 1 à x = (1/7)

• What does an inverse in modular 
arithmetic (say, mod 11) look like?

– that is, 7x = 11k + 1 for some x and k
– so x = 8 (where k = 5)

( )11 mod17x º
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Aside: Prime Numbers

• Recall: prime number is integer > 1 that is 
evenly divisible only by 1 and itself

• Two integers a and b are relatively prime
if they share no common factors but 1; 
i.e., if gcd(a, b) = 1

• There are infinitely many primes
• Large primes (512 bits and longer) figure 

prominently in public-key cryptography
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Modular Arithmetic: Inverses (2)

• In general, finding modular inverse means 
finding x s.t.

• Does modular inverse always exist?
– No! Consider

• In general, when a and n are relatively prime,
modular inverse x exists and is unique

• When a and n not relatively prime, x doesn’t 
exist

• When n prime, all of [1…n-1] relatively prime to 
n, and have an inverse in that range

n) (modx a-1 º

8) (modx 2-1 º
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Modular Arithmetic: Inverses (2)

• In general, finding modular inverse means 
finding x s.t.

• Does modular inverse always exist?
– No! Consider

• In general, when a and n are relatively prime,
modular inverse x exists and is unique

• When a and n not relatively prime, x doesn’t 
exist

• When n prime, all of [1…n-1] relatively prime to 
n, and have an inverse in that range

n) (modx a-1 º

8) (modx 2-1 º

Algorithm to find modular inverse: extended 
Euclidean Algorithm. Tractable; requires 
O(log n) divisions.
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Euler’s Phi Function: Efficient Modular 
Inverses on Relative Primes

• φ(n) = number of integers < n that are 
relatively prime to n

• If n prime, φ(n) = n-1
• If n=pq, where p and q prime:

φ(n) = (p-1)(q-1)
• If a and n relatively prime, Euler’s generalization 

of Fermat’s little theorem:
aφ(n) mod n = 1

• and thus, to find inverse x s.t. x = a-1 mod n:
x = aφ(n)-1 mod n



31

RSA Algorithm (1)

• [Rivest, Shamir, Adleman, 1978]
• Recall that public-key cryptosystems use 

two keys per user:
– K, the public key, made available to all
– K-1, the private key, kept secret by user
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RSA Algorithm (2)

• Choose two random, large primes, p and 
q, of equal length, and compute n=pq

• Randomly choose encryption key e, s.t. e 
and (p-1)(q-1) are relatively prime

• Use extended Euclidean algorithm to 
compute d, s.t. d = e-1 mod ((p-1)(q-1))

• Public key: K = (e, n)
• Private key: K-1 = d
• Discard p and q
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RSA Algorithm (3)

• Encryption:
– Divide message M into blocks mi, each shorter 

than n
– Compute ciphertext blocks ci with:

ci = mi
e mod n

• Decryption
– Recover plaintext blocks mi with:

mi = ci
d mod n
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Why Does RSA Decryption Recover 
Original Plaintext?

• Observe that ci
d = (mi

e)d = mi
ed

• Note that
because e and d are inverses mod (p-1)(q-1)

• So:
, and thus ed = k(p-1)+1
, and thus ed = h(q-1)+1

• Consider case where mi and p are relatively prime:
by Euler’s generalization of Fermat’s 

little theorem
– so

• And case where mi a multiple of p:

• Thus in all cases, 

  

€ 

ed≡1 (mod (p -1)(q-1))

  

€ 

ed≡1 (mod (p -1))
  

€ 

ed≡1 (mod (q-1))

  

€ 

mi
ed =mi

k(p-1)+1 =mi(mi
(p-1))k ≡mi (mod p)

  

€ 

mi
(p-1) ≡1 (mod p)

  

€ 

mi
ed =0ed =0 ≡mi (mod p)

  

€ 

mi
ed ≡mi (mod p)



Why Does RSA Decryption Recover 
Original Plaintext? (2)

• Similarly, 
• Now:

• Because p, q both prime and distinct:

• So 
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€ 

mi
ed ≡mi (mod q)

  

€ 

mi
ed -mi ≡ 0 (mod p)

  

€ 

mi
ed -mi ≡ 0 (mod q)

  

€ 

mi
ed -mi ≡ 0 (mod (pq))

  

€ 

ci
d =mi

ed ≡mi (mod n)


