Bayou: Replication with
Weak Inter-Node Connectivity

Brad Karp
UCL Computer Science

A

I

CS GZ03 / M030
26" October 2016

Context: Availability vs. Consistency

e NFS, Ivy, 2PC all had single points of
failure; not available under failures

e Paxos allows view-change to elect
primary, thus state machine replication

— Strong consistency model: all operations in
same order at all replicas, always appearance
of single system-wide order for all operations

— Strong reachability requirement: majority of
nodes must be reachable by leader

o If reachability weaker, can we provide any
consistency when we replicate?

Bayou:

Calendar Application Case Study

e Today’s lecture:

— Bayou's office calendar application as case

'S in a distributed

study in ordering and conflic

system with poor connectivity

e Fach calendar entry: room,
of participants

time, and set

e \Want everyone to see same set of entries

(eventually)

— else, users may double-book room, avoid

using unoccupied room, &c.

Traditional Calendar Application:
One Central Server

e Ordering of users’ requests: only one
copy, server picks order

o Conflict resolution: server checks for
conflicts (i.e., “is this room already booked
during this period?”) before accepting
updates

— Returns error to user if conflict; user decides
what to do

What's Wrong with Central Server?

e Want my calendar on my iPhone

—i.e., each user wants database replicated on
his PDA or laptop

— No master copy

e iPhone has only intermittent connectivity

— 3G/4G expensive when roaming, WiFi not
everywhere; no connectivity on many flights

— Bluetooth useful for direct contact with other
calendar users’ PDAs, but very short range

Simple Proposal: Swap Complete DBs

e Suppose two users in Bluetooth range

e Each sends entire calendar DB to other, as
with “classic” Palm or iPhone sync

e Possibly lots of network bandwidth
e What if conflict, i.e., two concurrent
meetings?
— iPhone sync just keeps both meetings!

— Want to do better: automatic conflict
resolution

Automatic Conflict Resolution

e Can't just view DB items as bits—too little
information to resolve conflicts!

— “Both files have changed” can falsely conclude entire
DBs conflict

— "Distinct record in each DB changed” can falsely
conclude no conflict
e Want to build intelligent DB app that knows how
to resolve conflicts

— More like users’ updates: read DB, think, change
request to eliminate conflict

— Must ensure all nodes resolve conflicts in same way
to keep replicas consistent

Insight: Ordering of Updates

e Maintain ordered list of updates at each
node

e Make sure every node holds same updates

e Make sure every node applies updates in
same order

e Make sure updates are deterministic
function of DB contents

e If we obey above, “sync” really just a
simple merge of two ordered lists!

What's in a Write?

e Each node’s ordered list of writes: write
log

e Suppose calendar update takes form:
—"10 AM meeting, Room 6.12, Mark and Brad”

— Sufficient for our goal?

e Better: "1-hour meeting, Room 6.12, Mark
and Brad, at 9, else 10, else 11"

— Also include unique ID: <local-time-stamp,
originating-node-ID>

What's in a Write?

/Instructions for write more than data to write

Write log really an “instruction” for calendar
program

Want all nodes to execute same instructions in
_same order, eventually

~

J

e Better: “1-hour meeting, Room 6.12, Mark

and Brad, at 9, else 10, else 11"

— Also include unique ID: <local-time-stamp,
originating-node-ID>

10

Write Log Example

e <701, A>: Node A asks for meeting M1 to
occur at 10 AM, else 11 AM

e <770, B>: Node B asks for meeting M2 to
occur at 10 AM, else 11 AM

o |Let’s agree to sort by write ID (e.g., <701,
A>

e As “writes” spread from node to node,
nodes may initially apply updates in
different orders

11

Write Log Example (2)

e Each newly seen write merged into log
e Log replayed
— May cause calendar displayed to user to
change!
—i.e., all entries really “tentative,” nothing
stable
o After everyone has seen all writes,
everyone will agree (contain same state)

12

Global Time Synchronization
Impossible

e Does this mean that globally ordering
writes by local timestamps impossible?

e No—timestamps just allow agreement on
order
— Nodes may have wrong clocks

— OK, so long as users don't expect writes to
reach calendar in real-time order made

13

Timestamps for Write Ordering:
Limitations

e Ordering by write ID arbitrarily constrains
order

— Never know if some write from past hasn't yet
reached your node

— So all entries in log must be tentative
forever

— And you must store entire log forever

e Problem: how can we allow committing a
tentative entry?

— S0 we can have meetings and trim logs

14

Criteria for Committing Writes

e For log entry X to be committed, everyone
must agree on:

— Total order of all previous committed entries
— Fact that X is next in total order
— Fact that all uncommitted entries are “after” X

15

How Bayou Agrees on Total Order
of Committed Writes

One node designated “primary replica”

Primary marks each write it receives with
permanent CSN (commit sequence number)

— That write is committed
— Complete timestamp is <CSN, local-TS, node-id>

Nodes exchange CSNs
CSNs define total order for committed writes

— All nodes eventually agree on total order
— Uncommitted writes come after all committed writes

16

Showing Users that Writes
Have Committed

e Still not safe to show users that an
appointment request has committed

e Entire log up to newly committed entry
must be committed

— else there might be earlier committed write a
node doesn‘t know about!

— ...and upon learning about it, would have to
re-run conflict resolution

e Result: committed write not stable unless
node has seen all prior committed writes

17

Showing Users that Writes
Have Committed

g Bayou propagates writes between nodes to enforce
this invariant

i.e., Bayou propagates writes in order

m

— else there might be earlier committed write a
node doesn‘t know about!

— ...and upon learning about it, would have to
re-run conflict resolution

e Result: committed write not stable unless
node has seen all prior committed writes

18

Committed vs. Tentative Writes

e Can now show user if a write has
committed

— When node has seen every CSN up to that
point, as guaranteed by propagation protocol

e Slow or disconnected node cannot prevent
commits!

— Primary replica allocates CSNs; global order of
writes may not reflect real-time write times

e What about tentative writes, though—how
do they behave, as seen by users?

19

Tentative Writes

e Two nodes may disagree on meaning of
tentative (uncommitted) writes

— Even if those two nodes have synced
with each other!

— Only CSNs from primary replica can resolve
these disagreements permanently

20

Example: Disagreement on
Tentative Writes

time

logs 21

Example: Disagreement on
Tentative Writes

time

W <0, C>

logs 22

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
<0, C>

logs 23

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
<0, C>

logs 24

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
<1, B> <0, C>

logs 25

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
W <2 A>
<1, B> <0, C>

logs 26

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
W <2 A>
<2, A> <1, B> <0, C>

logs 27

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
W <2 A>
sync (3)
<2, A> <1, B> <0, C>

logs 28

Example: Disagreement on
Tentative Writes

time

A B C
W <0, C>
W <1, B>
W <2, A>
sync (3)
<1, B> <1, B> <0, C>
<2, A> <2, A>

logs 29

Example: Disagreement on
Tentative Writes

time

A B C
W <0, C>
W <1, B>
W <2 A>
sync (3)
| sync (4)
<1, B> <1, B> <0, C>
<2, A> <2, A>

logs 30

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
W <2 A>
sync (3)
| sync (4)
<1, B> <0,C> <0, C>
<2, A> <1, B> <1, B>
<2, A> <2, A>

logs 31

Example: Disagreement on
Tentative Writes

time A B C
W <0, C>
W <1, B>
W <2 A>
sync (3)
| sync (4)
<1, B> <0, C> <0, C>
<2, A> <1, B> <1, B>
<2, A> <2, A>

logs 32

Trimming the Log

e \When nodes receive new CSNs, can
discard all committed log entries seen up
to that point

— Update protocol guarantees CSNs received in
order

e Instead, keep copy of whole database as
of highest CSN

— By definition, official committed database
— Everyone does (or will) agree on contents

— Entries never need go through conflict
resolution

33

Trimming the Log

e \When nodes receive new CSNs, can
discard all committed log entries seen up
to that point

[Result: no need to keep years of log data!

e Instead, keep copy of whole database as
of highest CSN

— By definition, official committed database
— Everyone does (or will) agree on contents

— Entries never need go through conflict
resolution

34

Ordering of Commits by
Primary Replica

e Can primary commit writes in any order it
pleases?

— Suppose user creates appointment, then decides to
delete it, or change attendee list

— What order must these ops take in CSN order?
o Create first, then delete or modify

e Must be true in every node’s view of tentative log entries,
too!

e Total order of writes must preserve order of
writes made at each node

— Not necessarily order among different nodes’ writes

35

How Does Primary Replica Commit
Each Node’s Writes in Order?

e Nodes don't quite use real-time clocks for
timestamps—use Lamport logical clocks

— Anytime see message with later timestamp
than current time, set clock to after that
timestamp

e All nodes send updates in order

e S0 primary receives updates in per-node
causal order, and commits them in that
order

36

Syncing with Trimmed Logs

e Suppose nodes discard all writes in log
with CSNs

— Just keep copy of “stable” DB, reflecting
discarded entries

e Cannot receive writes that conflict with DB

— Only could be if write has CSN less than a
discarded CSN

— Already saw all writes with lower CSNs in right
order—if see them again, can discard!

37

Syncing with Trimmed Logs (2)

e To propagate to node X

e If node X's highest CSN less than mine:
— Send X full stable DB
— X uses that DB as starting point
— X can discard all his CSN log entries
— X can play his tentative writes into that DB

o If node X's highest CSN greater than
mine:
— X can ignore my DB!

38

Bayou: Summary

e Seems more useful than old Palm’s calendar!

— Often disconnected when making appointments
— Automatic conflict resolution convenient

e Not at all transparent to applications!
— Very strange programming practices
— Writes are code, not just bits!
— Check for conflicts, resolve conflicts

e Doesn'’t work for all apps
— Bank account may be OK
— But hard to imagine for source code repository!

39

