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Today’s Lecture

• Administrivia
• Overview of Distributed Systems

– What are they?
– Why build them?
– Why are they hard to build well?

• Operating Systems Background
• Questionnaire



Prerequisites

• Undergraduates: must have taken UCL CS 
3035, Networked Systems, or equivalent 
experience (3rd-year undergrad 
networking class, covering Internet 
protocols and architecture in depth)

• Graduates: must be concurrently enrolled 
in UCL CS GZ01, Networked Systems, or 
equivalent prior experience (3rd-year 
undergrad networking class, covering 
Internet protocols and architecture in 
depth)
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Course Staff and Office Hours

• Instructor:
– Brad Karp, MPEB 6.20, Mon 6 – 7 PM, ext. 30406

• Teaching Assistant:
– Nikola Gvozdiev, MPEB 7th floor lab,

Thu 5 – 6 PM, ext. 33670
• Office hours begin today
• Time reserved for answering your questions
• Outside office hours, email to schedule 

appointment
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Meeting Times and Locations

• (Most) Mondays 11 AM – 12:30 PM,
Roberts 422

• (Most) Wednesdays 9:30 – 11 AM,
Drayton House B03

• (A Few) Fridays 5 – 6:30 PM,
25 Gordon Street, Math 500

• Lecture will usually run 90 minutes
• Occasionally lecture will be followed by a 30-

minute discussion of an additional topic (e.g., Q&A 
on a coursework); on these dates, full two hours!

• No lecture 10th, 12th October; 21st, 23rd November; 
14th December

• Reading week: 7th – 11th November, no lecture!
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Class Communication

• Class web page
– http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2016/
– Detailed calendar, coursework, class policies
– Your responsibility: check page daily!

• M030/GZ03 Piazza Page
– https://piazza.com/ucl.ac.uk/fall2016/

computersciencem030gz03
– Important announcements from class staff (also 

forwarded to you by email)
– Postings from class staff and students
– Subscribe using enrollment key
– You must subscribe (class policy)
– Your responsibility: check email daily!



Using Piazza

• Please post questions on class material on 
Piazza, rather than emailing course staff

• Whole class benefits from seeing your 
question and its answer

• Students are encouraged to answer one 
another’s questions!

• When discussing something private (e.g., 
your marks, or details of your specific 
solution to a coursework), mark your post 
as private, so only class staff see it!
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Readings, Lectures, and
Lecture Notes

• Readings must be read before lecture; 
lectures assume you have done so

• Lecture notes will be posted to the class 
web site just after lecture

• Class calendar shows all reading 
assignments day by day…
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Readings

• No textbook
• Classic and recent research papers on real, 

built distributed and secure systems
• Available on class web page; print these 

yourselves
• All readings examinable
• Research papers are dense and complex; 

they are often challenging
– Be prepared to read and re-read the papers
– Come to lecture with questions, and/or use office 

hours
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Grading

• Final grade components:
– One programming coursework: 15%
– One problem set coursework: 15%
– Final exam: 70%

10



Late Work Policy

• N.B. that M030/GZ03 policy differs from that 
for other CS classes!

• For every day late or fraction thereof, including 
weekend days, 10% of marks deducted

• Each student receives budget of 3 late days for 
entire term
– Each late day “cancels” one day of lateness
– Goal: give you flexibility, e.g., in case you can’t find a 

bug, or encounter unexpected other snag
– You declare how many late days to use when turning 

in a coursework late; cannot declare or change later!
– Must use whole late days—cannot use fractional 

ones! 11



Late Days (cont’d)

• If submission more than 2 days late after 
taking late days into account, zero marks

• Programming courseworks turned in 
online; may be submitted 24/7

• Problem set courseworks turned in on 
paper in lecture; can be submitted M – F 
only
– Weekend days after deadline still count as 

elapsed days
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Late days give you flexibility.
No other extensions given on coursework, 
unless for unforeseeable, severely 
extenuating circumstances!



Academic Honesty

• All courseworks must be completed 
individually

• May discuss understanding of problem 
statement, general sketch of approach

• May not discuss details of solution
• May not show your solution to others (this 

year or in future years)
• May not look at others’ solutions (this year 

or from past years)
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Academic Honesty (cont’d)

• We use code comparison software
– Compares parse trees; immune to obfuscation
– Produces color-coded all-student-pairs code 

comparisons
• Don’t copy code—you will be caught!
• Penalty for copying: automatic zero 

marks, referral for disciplinary action by 
UCL (usually leads to exclusion from all 
exams at UCL)
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Today’s Lecture

• Administrivia
• Overview of Distributed Systems

– What are they?
– Why build them?
– Why are they hard to build well?

• Operating Systems Background
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What Is a Distributed System?

• Multiple computers (“machines,” “hosts,” 
“boxes,” &c.)
– Each with CPU, memory, disk, network 

interface
– Interconnected by LAN or WAN (e.g.,

Internet)
• Application runs across this dispersed 

collection of networked hardware
• But user sees single, unified system
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What Is a Distributed System?
(Alternate Take)

“A distributed system is a system in which I 
can’t do my work because some computer 
that I’ve never even heard of has failed.”

– Leslie Lamport, Microsoft Research (ex DEC),
2013 Turing Award winner
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Start Simple: Centralized System

• Suppose you run Gmail
• Workload:

– Inbound email arrives; store on disk
– Users retrieve, delete their email

• You run Gmail on one server with disk

Gmail
Server (PC)

Email
Sender

Email
Sender

Email
Sender

Email
Reader

Email
Reader

Email
Reader
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What are shortcomings of this design?
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Why Distribute?
For Availability

• Suppose Gmail server goes down, or network 
between client and it goes down

• No incoming mail delivered, no users can read 
their inboxes

• Fix: replicate the data on several servers
– Increased chance some server will be reachable
– Consistency? One server down when delete message, 

then comes back up; message returns in inbox
– Latency? Replicas should be far apart, so they fail 

independently
– Partition resilience? e.g., airline seat database splits, 

one seat remains, bought twice, once in each half!
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Why Distribute?
For Scalable Capacity

• What if Gmail a huge success?
• Workload exceeds capacity of one server
• Fix: spread users across several servers

– Best case: linear scaling—if U users per box, 
N boxes support NU users

– Bottlenecks? If each user’s inbox on one 
server, how to route inbound mail to right 
server?

– Scaling? How close to linear?
– Load balance? Some users get more mail than 

others!
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Performance Can Be Subtle

• Goal: predictable performance under high 
load

• 2 employees run a Starbucks
– Employee 1: takes orders from customers, 

calls them out to Employee 2
– Employee 2: 

• writes down drink orders (5 seconds per order)
• makes drinks (10 seconds per order)

• What is throughput under increasing load?
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Starbucks Throughput

• Peak system performance: 4 drinks / min
• What happens when load > 4 orders / min?
• What happens to efficiency as load increases?
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Starbucks Throughput

• Peak system performance: 4 drinks / min
• What happens when load > 4 orders / min?
• What happens to efficiency as load increases?

What would preferable curve be?
What design achieves that goal?
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Why Are Distributed Systems
Hard to Design?

• Failure: of hosts, of network
– Remember Lamport’s lament

• Heterogeneity
– Hosts may have different data representations

• Need consistency (many specific definitions)
– Users expect familiar “centralized” behavior

• Need concurrency for performance
– Avoid waiting synchronously, leaving resources idle
– Overlap requests concurrently whenever possible
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Security

• Before Internet:
– Encryption and authentication using cryptography
– Between parties known to each other (e.g., 

diplomatic wire)
• Today:

– Entire Internet of potential attackers
– Legitimate correspondents often have no prior 

relationship
– Online shopping: how do you know you gave credit 

card number to amazon.com? How does amazon.com 
know you are authorized credit card user?

– Software download: backdoor in your new browser?
– Software vulnerabilities: remote infection by worms!
– Crypto not enough alone to solve these problems!


