
Distributed Systems and Security:
An Introduction

Brad Karp
UCL Computer Science

CS GZ03 / M030
3rd October 2016



2

Today’s Lecture

• Administrivia
• Overview of Distributed Systems

– What are they?
– Why build them?
– Why are they hard to build well?

• Operating Systems Background
• Questionnaire



Prerequisites

• Undergraduates: must have taken UCL CS 
3035, Networked Systems, or equivalent 
experience (3rd-year undergrad 
networking class, covering Internet 
protocols and architecture in depth)

• Graduates: must be concurrently enrolled 
in UCL CS GZ01, Networked Systems, or 
equivalent prior experience (3rd-year 
undergrad networking class, covering 
Internet protocols and architecture in 
depth)

3



Course Staff and Office Hours

• Instructor:
– Brad Karp, MPEB 6.20, Mon 6 – 7 PM, ext. 30406

• Teaching Assistant:
– Nikola Gvozdiev, MPEB 7th floor lab,

Thu 5 – 6 PM, ext. 33670
• Office hours begin today
• Time reserved for answering your questions
• Outside office hours, email to schedule 

appointment
4



Meeting Times and Locations

• (Most) Mondays 11 AM – 12:30 PM,
Roberts 422

• (Most) Wednesdays 9:30 – 11 AM,
Drayton House B03

• (A Few) Fridays 5 – 6:30 PM,
25 Gordon Street, Math 500

• Lecture will usually run 90 minutes
• Occasionally lecture will be followed by a 30-

minute discussion of an additional topic (e.g., Q&A 
on a coursework); on these dates, full two hours!

• No lecture 10th, 12th October; 21st, 23rd November; 
14th December

• Reading week: 7th – 11th November, no lecture!
5



6

Class Communication

• Class web page
– http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2016/
– Detailed calendar, coursework, class policies
– Your responsibility: check page daily!

• M030/GZ03 Piazza Page
– https://piazza.com/ucl.ac.uk/fall2016/

computersciencem030gz03
– Important announcements from class staff (also 

forwarded to you by email)
– Postings from class staff and students
– Subscribe using enrollment key
– You must subscribe (class policy)
– Your responsibility: check email daily!



Using Piazza

• Please post questions on class material on 
Piazza, rather than emailing course staff

• Whole class benefits from seeing your 
question and its answer

• Students are encouraged to answer one 
another’s questions!

• When discussing something private (e.g., 
your marks, or details of your specific 
solution to a coursework), mark your post 
as private, so only class staff see it!

7



Readings, Lectures, and
Lecture Notes

• Readings must be read before lecture; 
lectures assume you have done so

• Lecture notes will be posted to the class 
web site just after lecture

• Class calendar shows all reading 
assignments day by day…

8



Readings

• No textbook
• Classic and recent research papers on real, 

built distributed and secure systems
• Available on class web page; print these 

yourselves
• All readings examinable
• Research papers are dense and complex; 

they are often challenging
– Be prepared to read and re-read the papers
– Come to lecture with questions, and/or use office 

hours

9



Grading

• Final grade components:
– One programming coursework: 15%
– One problem set coursework: 15%
– Final exam: 70%

10



Late Work Policy

• N.B. that M030/GZ03 policy differs from that 
for other CS classes!

• For every day late or fraction thereof, including 
weekend days, 10% of marks deducted

• Each student receives budget of 3 late days for 
entire term
– Each late day “cancels” one day of lateness
– Goal: give you flexibility, e.g., in case you can’t find a 

bug, or encounter unexpected other snag
– You declare how many late days to use when turning 

in a coursework late; cannot declare or change later!
– Must use whole late days—cannot use fractional 

ones! 11



Late Days (cont’d)

• If submission more than 2 days late after 
taking late days into account, zero marks

• Programming courseworks turned in 
online; may be submitted 24/7

• Problem set courseworks turned in on 
paper in lecture; can be submitted M – F 
only
– Weekend days after deadline still count as 

elapsed days
12



Late Days (cont’d)

• If submission more than 2 days late after 
taking late days into account, zero marks

• Programming courseworks turned in 
online; may be submitted 24/7

• Problem set courseworks turned in on 
paper in lecture; can be submitted M – F 
only
– Weekend days after deadline still count as 

elapsed days
13

Late days give you flexibility.
No other extensions given on coursework, 
unless for unforeseeable, severely 
extenuating circumstances!



Academic Honesty

• All courseworks must be completed 
individually

• May discuss understanding of problem 
statement, general sketch of approach

• May not discuss details of solution
• May not show your solution to others (this 

year or in future years)
• May not look at others’ solutions (this year 

or from past years)
14



Academic Honesty (cont’d)

• We use code comparison software
– Compares parse trees; immune to obfuscation
– Produces color-coded all-student-pairs code 

comparisons
• Don’t copy code—you will be caught!
• Penalty for copying: automatic zero 

marks, referral for disciplinary action by 
UCL (usually leads to exclusion from all 
exams at UCL)

15



16

Today’s Lecture

• Administrivia
• Overview of Distributed Systems

– What are they?
– Why build them?
– Why are they hard to build well?

• Operating Systems Background
• Questionnaire



17

What Is a Distributed System?

• Multiple computers (“machines,” “hosts,” 
“boxes,” &c.)
– Each with CPU, memory, disk, network 

interface
– Interconnected by LAN or WAN (e.g.,

Internet)
• Application runs across this dispersed 

collection of networked hardware
• But user sees single, unified system



18

What Is a Distributed System?
(Alternate Take)

“A distributed system is a system in which I 
can’t do my work because some computer 
that I’ve never even heard of has failed.”

– Leslie Lamport, Microsoft Research (ex DEC),
2013 Turing Award winner



19

Start Simple: Centralized System

• Suppose you run Gmail
• Workload:

– Inbound email arrives; store on disk
– Users retrieve, delete their email

• You run Gmail on one server with disk

Gmail
Server (PC)

Email
Sender

Email
Sender

Email
Sender

Email
Reader

Email
Reader

Email
Reader



20

Start Simple: Centralized System

• Suppose you run Gmail
• Workload:

– Inbound email arrives; store on disk
– Users retrieve, delete their email

• You run Gmail on one server with disk

Gmail
Server (PC)

Email
Sender

Email
Sender

Email
Sender

Email
Reader

Email
Reader

Email
Reader

What are shortcomings of this design?



21

Why Distribute?
For Availability

• Suppose Gmail server goes down, or network 
between client and it goes down

• No incoming mail delivered, no users can read 
their inboxes

• Fix: replicate the data on several servers
– Increased chance some server will be reachable
– Consistency? One server down when delete message, 

then comes back up; message returns in inbox
– Latency? Replicas should be far apart, so they fail 

independently
– Partition resilience? e.g., airline seat database splits, 

one seat remains, bought twice, once in each half!



22

Why Distribute?
For Scalable Capacity

• What if Gmail a huge success?
• Workload exceeds capacity of one server
• Fix: spread users across several servers

– Best case: linear scaling—if U users per box, 
N boxes support NU users

– Bottlenecks? If each user’s inbox on one 
server, how to route inbound mail to right 
server?

– Scaling? How close to linear?
– Load balance? Some users get more mail than 

others!



23

Performance Can Be Subtle

• Goal: predictable performance under high 
load

• 2 employees run a Starbucks
– Employee 1: takes orders from customers, 

calls them out to Employee 2
– Employee 2: 

• writes down drink orders (5 seconds per order)
• makes drinks (10 seconds per order)

• What is throughput under increasing load?



24

Starbucks Throughput

• Peak system performance: 4 drinks / min
• What happens when load > 4 orders / min?
• What happens to efficiency as load increases?



25

Starbucks Throughput

• Peak system performance: 4 drinks / min
• What happens when load > 4 orders / min?
• What happens to efficiency as load increases?

What would preferable curve be?
What design achieves that goal?



26

Why Are Distributed Systems
Hard to Design?

• Failure: of hosts, of network
– Remember Lamport’s lament

• Heterogeneity
– Hosts may have different data representations

• Need consistency (many specific definitions)
– Users expect familiar “centralized” behavior

• Need concurrency for performance
– Avoid waiting synchronously, leaving resources idle
– Overlap requests concurrently whenever possible



27

Security

• Before Internet:
– Encryption and authentication using cryptography
– Between parties known to each other (e.g., 

diplomatic wire)
• Today:

– Entire Internet of potential attackers
– Legitimate correspondents often have no prior 

relationship
– Online shopping: how do you know you gave credit 

card number to amazon.com? How does amazon.com 
know you are authorized credit card user?

– Software download: backdoor in your new browser?
– Software vulnerabilities: remote infection by worms!
– Crypto not enough alone to solve these problems!


