
The Kerberos
Authentication System

Brad Karp
UCL Computer Science

CS GZ03 / M030
28th November 2016



2

Why Study Kerberos?

• One of most widely used authentication 
systems, implemented in many, many 
UNIXes for a variety of services

• Simple example of use of cryptography to 
solve practical authentication problems

• Imperfect; weaknesses instructive



3

Kerberos: Goals

• Authentication of diverse entities, for diverse 
services:
– Users, client machines, server machines
– File systems, remote login, file transfer, printing, &c.

• Authentication in an “open environment”
– Users may be superuser on their own workstations

(so may adopt any user ID if credentials over network 
unauthenticated); hardware not centrally controlled

– Same user population may use many machines and 
services (e.g., labs of public-access machines on a 
campus)

• Drop-in replacement of passwords for pre-
existing protocols
– Convenient; strength of security?



4

Kerberos Model: Central Authority

• Within a site (e.g., MIT), a central 
database server stores names and secret 
keys for all principals
– Keys are for 56-bit DES symmetric-key cipher
– Now brute-forceable; more reasonable at time 

of Kerberos’ first use (1988)
• All users and machines are principals, 

named with human-readable names
• All principals trust central database server



5

Kerberos Principal Names

• Users: e.g., bkarp
– Can have instances; sub-names of a principal, e.g., 

bkarp.mail, bkarp.root
• Machines: e.g., boffin, arkell, sonic
• Services: e.g., rlogin.sonic (instance of the rlogin 

service running on sonic)
• Site name: realm; all machines in one 

administrative domain share one central 
Kerberos database, in same realm

• name.instance@realm, e.g., bkarp@UCL.AC.UK



6

Kerberos Protocol

• Goal: mutually authenticated communication
– Two principals wish to communicate
– Principals know each other by name in central 

database
– Kerberos establishes shared secret between the two
– Can use shared secret to encrypt or MAC subsequent 

communication
– [Few “Kerberized” services encrypt, and none MAC!]

• Approach: leverage keys shared with central 
database
– Central database trusted by/has keys for all principals



7

Kerberos Credentials

• Client can either be user or machine, 
depending on context

• To talk to server s, client c needs shared 
secret key and ticket:
– Session key: Ks,c (randomly generated by 

central database)
– Ticket:

T = {s, c, addrc, timestamp, lifetime, Ks,c}Ks(where Ks is key s shares with database)
– Only server s can decrypt ticket



8

Kerberos Credentials (2)

• Given ticket, client creates authenticator:
– Authenticator:

A = {c, addrc, timestamp}Ks,c
– Client must know Ks,c to create authenticator
– Authenticator can only be used once

• Client presents both ticket T and authenticator A 
to server when requesting an operation
– T convinces server that Ks,c was given to c
– A intended to prevent replay of requests

• “Kerberized” protocols use authenticator in place 
of password



9

Getting the User’s First Ticket

• User logs in at console with username and 
password (username is Kerberos name)

• Kerberized login program retrieves initial ticket 
for user:
– Client machine sends to Kerberos database:

c, tgs
(tgs is principal name for ticket-granting service)

– Server responds with:
{Kc,tgs, {Tc,tgs}Ktgs}Kc

– where
Tc,tgs = tgs, c, addrc, timestamp, lifetime, Kc,tgs

– Client decrypts server’s response with
Kc = H(password)



10

Requesting a Service

• Client c (e.g., user bkarp) wishes to use a 
service on s, already holds Kc,tgs

• Client requests ticket from tgs as follows:
– Client sends to tgs:

s, {Tc,tgs}Ktgs, {Ac}Kc,tgs
– tgs replies to client with ticket for service on 

that server:
{{Tc,s}Ks,Kc,s}Kc,tgs

– where Kc,s is a new, randomly generated 
session key for use between c and s



11

Using a Service

• Once client holds ticket for service, uses it 
with authenticator to request operation 
from server:
– Client sends to s:

service name, {Tc,s}Ks,{Ac}Kc,s
– Server validates Tc,s and Ac, and executes 

operation if they are valid
• Server uses timestamps and expiration 

times to invalidate stale, “future”, replayed 
requests



12

Kerberos: Summary of Message Flow

1. Request for TGS ticket:
c, tgs

2. Ticket for TGS:
{Kc,tgs, {Tc,tgs}Ktgs}Kc

3. Request for Server ticket:
s, {Tc,tgs}Ktgs, {Ac}Kc,tgs

4. Ticket for Server:
{{Tc,s}Ks,Kc,s}Kc,tgs

5. Request for Service:
service name, {Tc,s}Ks,{Ac}Kc,s

KDC

User/
Client

TGS

Server

1

2 3
4

5



13

Ticket Lifetime

• How should we choose ticket lifetimes?
• Convenience: longer ticket-granting ticket 

lifetime à user must type password less often
• Performance: longer service ticket lifetime à

client must request new service ticket less often
• Risk: longer ticket lifetime lengthens period 

when ticket can be stolen, abused
• MIT Athena implementation destroys ticket-

granting ticket when user logs out



14

Kerberos Security Weaknesses

• Vulnerability to replay attacks; default 
authenticator lifetime 5 minutes

• Reliance on synchronized clocks across 
nodes

• Storage of tickets on workstations
• No way to change compromised password 

securely
• Key database focal point for attack
• Hard to upgrade key database (relied on 

by all nodes in system)



15

Kerberos User Inconveniences

• Large (e.g., university-wide) administrative 
realms:
– University-wide admins often on critical path
– Departments can’t add users or set up new servers
– Can’t develop new services without central admins
– Can’t upgrade software/protocols without central 

admins
– Central admins have monopoly servers/services (can’t 

set up your own without a principal)
• Rigid; what if user from realm A wants to 

authenticate himself to host at realm B?
• Ticket expirations

– Must renew tickets every 12-23 hours
– How to create long-running background jobs?


