
Introduction to Security and
User Authentication

Brad Karp
UCL Computer Science

CS GZ03 / M030
14th November 2016

2

Topics We’ll Cover

• User login authentication (local and remote)
• Cryptographic primitives, how to use them, and how not

to use them
• Kerberos distributed authentication system
• Secure Sockets Layer (SSL)/Transport Layer Security

(TLS) authentication and encryption system
• TAOS: logic for reasoning formally about authentication
• Software vulnerabilities and exploits
• Exploit Defenses
• Software Fault Isolation (SFI): containing untrusted code
• OKWS: a least-privilege isolated web server for UNIX

3

A Simple Example

• Suppose you place
an order with
Amazon

• Goals:
– You get the item

you ordered
– Amazon gets

payment in the
amount you agreed
to pay on the
payment page

You

Internet

Amazon

Credit card
number

4

A Simple Example

• Suppose you place
an order with
Amazon

• Goals:
– You get the item

you ordered
– Amazon gets

payment in the
amount you agreed
to pay on the
payment page

You

Internet

Amazon

Credit card
number

How might this go wrong?
Let us count the ways…

5

Worries for Amazon Order

• What if an eavesdropper taps Internet link?
– Network cables usually not physically secure

• What if someone has broken into Internet
router? (They’re just computers…)

• How do you know you’re communicating with
Amazon?

• How does Amazon know you are authorized to
use the credit card number you provide?

• What if a dishonest Amazon employee learns my
credit card number?

• What if Amazon sends me wrong book, in error

6

Worries for Amazon Order (2)

• What if someone has broken into my
desktop PC? Or my file server?

• Where did my web browser come from?
How about my OS?

• What if my display or keyboard radiates a
signal that can be detected at some
distance?

7

Worries for Amazon Order (2)

• What if someone has broken into my
desktop PC? Or my file server?

• Where did my web browser come from?
How about my OS?

• What if my display or keyboard radiates a
signal that can be detected at some
distance?

Fundamental security question:
“Whom or what am I trusting?”
Weakest item on list of answers determines
system security!

8

Whom or What Am I Trusting?

“They showed me a telephone, and said
they were worried about ‘the microphone.’
When I look at a telephone, I see one
high-fidelity microphone and one ‘low-
fidelity microphone.’”

“Most people call this a telephone cord. I
call it an antenna.”
– Bob Morris, Sr., former Chief Scientist of the

National Computer Security Center, NSA

9

Whom or What Am I Trusting? (2)

10

Example Secure System Design

• Secure telephone line between FBI and CIA
• Goal: only people in FBI and CIA buildings can learn

what’s said in calls
• Plan:

– Radiation-proof buildings
– One entrance/exit per building
– Armed guards at entrances
– Guards check ID cards, record all people in/out
– Pressurized, shielded cable between two buildings
– No other cables allowed to leave buildings
– Pass laws to punish people who reveal government secrets
– Invite NSA to try to steal content of calls
– Send dummy information, spy on KGB, see if they learn it

11

Perfect Security: An Unattainable Goal

• Merely a question of how motivated adversary
is, and how much money he has

• No individual technique perfect
– Pressurized cable only raises cost for attacker
– Can’t completely shield a building
– People can be bribed, blackmailed

• Could meet stated goal, but it could be
inappropriate
– What if FBI, CIA allow in uncleared visitors?
– What if employees go home and talk in sleep?

• Solution: forbid employees from leaving the building…

12

Definitions

• Security: techniques to control who can
access/modify system

• Principal: unit of accountability in a system
(e.g., user)

• Access control: techniques to restrict
operations to particular principals

• Authentication: verification of identity of
principal making request

• Authorization: granting of request to
principal

13

Attacks on Security

• Violation of secrecy
– Attacker reads data without authorization

• Violation of integrity
– Attacker modifies data without authorization
– e.g., attacker modifies data on disk
– e.g., attacker modifies network reply to “read file”

request
• Denial of service

– Attacker makes system unavailable to legitimate users
– e.g., overload the system, or cause a deadlock
– e.g., trigger security mechanism (wrong ATM PIN 3

times)

14

Building Secure Systems:
General Approach

• Figure out what you want to protect, what it’s worth
• Figure out which attacks you want to defend against
• State goals and desired properties clearly

– Not “impossible to break”
– Better: “attack X on resource Y should cost $Z”

• Structure system with two types of components:
– Trusted: must operate as expected, or breach
– Untrusted: subverted operation doesn’t lead to breach

• Minimize size of trusted components
– Maybe we should have built secure room, not building…

• Analyze resulting system, monitor success

15

Security Is a Negative Goal

• Ensure nothing happens without
authorization
– How do you reason about what a system will

not do?
• First step: specify who authorized to do

what
– In other words, specify a policy

16

Policy

• Policy: goal security must achieve
– Human intent—originates from outside system

• Often talked about in terms of subjects and
objects
– Subject: principal
– Object: abstraction to which access requested (e.g.,

file, memory page, serial port)
– Each object supports different kinds of access (e.g.,

read or write file, change permissions, …)
• Access control: should operation be allowed?

– What principal making request? (Authentication)
– Is operation permitted to principal? (Authorization)

17

Access Control: Examples

• Machine in locked room, not on network
– Policy: only users with keys can access computer

• Bank ATM card
– Policy: only allowed to withdraw money present in

your account
– Authentication: must have card and know PIN
– Authorization: database tracks account balances

• Private UNIX file (only owner can read)
– Authentication: password to run software as user
– Authorization: kernel checks file’s permission bits

• Military classified data
– If process reads “top-secret” data, cannot write

“secret” data

18

Next: User Authentication

• How to use passwords to authenticate
users: at the console, and remotely, over
a network

• Attacks against password-based
authentication schemes

• Designing robust password-based
authentication schemes

19

Authentication of Local Users

• Goal: only file’s owner can access file
• UNIX authentication policy:

– Each file has an owner principal: an integer user ID
– Each file has associated owner permissions (read,

write, execute, &c.)
– Each process runs with integer user ID; only can

access file as owner if matches file’s owner user ID
– OS assigns user ID to user’s shell process at login

time, authenticated by username and password
– Shell process creates new child processes with same

user ID
• How does UNIX know the correspondence

among <username, user ID, password>, for all
users?

20

Straw Man:
Plaintext Password Database

• Keep password database in a file, e.g.:
bkarp:3715:secretpw

mjh:4212:multicast

• Passwords stored in file in plaintext
• Make file readable only by privileged superuser

(root)
• /bin/login program prompts for usernames

and passwords on console; runs as root, so can
read password database

• How well does this scheme meet original goal?

21

Cryptographic Primitive:
Cryptographic Hash Function

• Don’t want someone who sees the password
database to learn users’ passwords

• Cryptographic hash function, y=H(x) such that:
– H() is preimage-resistant: given y, and with

knowledge of H(), computationally infeasible to
recover x

– H() is second-preimage-resistant: given y,
computationally infeasible to find x’¹x s.t.
H(x)=H(x’)=y

• Widely used cryptographic hash functions:
– MD-5: output is 128 bits, broken
– SHA-1: output is 160 bits; on verge of being broken
– SHA-256: output is 256 bits, best current practice

22

Better Plan:
Hashed Password Database

• Keep password database in a file:
bkarp:3715:Xc8zOP0ZHJkp
mjh:4212:p6FsAtQl4cwi

• Instead of password plaintext x, store
H(x)

• Make file readable by all (!)
• One-wayness of H() means no one can

recover x from H(x), right?
– WRONG! Users choose memorable

passwords…

23

Insight: Counting Possible Passwords

• If users pick random n-character passwords
using c possible characters, how many guesses
expected to guess one password?

cn/2
e.g., 8 characters, each ~90 possibilities, 2.15 x 1015

• Do users pick random passwords?
– Of course not; very hard to remember
– Common choice: word in native language

• How many words in common use in modern
English?
– 50,000-70,000 (or far fewer, if you read Metro)

24

Dictionary Attack on Hashed Password
Databases

• Suppose hacker obtains copy of password file
(until recently, world-readable on UNIX)

• Compute H(x) for 50K common words
• String compare resulting hashed words against

passwords in file
• Learn all users’ passwords that are

common English words after only 50K
computations of H(x)!

• Same hashed dictionary works on all
password files in world!

