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The Multi-Core
Software Design Problem

• Old days:
– CPU frequencies steadily increase
– Take existing binary, runs faster on new CPU

• The multi-core era:
– CPU frequencies cease increasing; heat 

dissipation no longer feasible
– Instead, multiple CPUs (cores) on one die
– Legacy, single-threaded binary doesn’t 

increase in speed as number of cores 
increases!
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Challenges of Writing
Multi-Core Code

• Must divide computation into multiple 
threads

• Coordination (locking), communication 
(data sharing) between cores costly
– Motivates data structures that eliminate or 

minimize locks and their use
• Operating system shared by all 

applications and threads
– Data structures in kernel bound to be shared
– Scalable as core count, thread count increase?
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“Scalable” in Multi-Core Context

• Typically, choose workload (e.g., multi-
threaded application); run on increasing 
number of cores

• Plot throughput (“work completed per time”) 
vs. number of cores

• Desired outcome: linear speedup in number 
of cores

• Less preferred: linear up to some K cores, 
then flat

• Unscalable: linear up to some K, then 
collapse to very low or zero
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Background: Data Sharing on 
Multi-Core Machines

• What’s a “MESI-like protocol”?
– Modified, Exclusive, Shared, Invalid states
– Basically, much like Ivy DSM, but with cache 

lines (64 bytes) rather than VM pages (4 KB)
• Many cores can concurrently hold the 

same cache line and read it
• To write a cache line, writing core must 

have exclusive access to it (i.e., no other 
cores may have copy of it)
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Multi-Core Sharing (cont’d)

• Communication between cores occurs when:
– One core writes after another has read
– One core reads after another has written

• Communication between cores may be slow
– Interconnect among cores shared; fetch of cache 

line may queue behind other fetches
• False sharing
• Conflict-free memory accesses:

– Set of accesses in which no core writes a cache 
line previously read or written by another core

– Linear scaling as number of cores increases
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Context: Prior Work on Scalable 
Many-Core Oses: Barrelfish

• Roscoe et al., SOSP 2009
• Modern many-core machines are distributed 

systems.
• Hypothesis: shared memory cannot scale to 

many cores, and encourages programmers to 
write code that cannot scale.

• Let’s design an OS as a distributed system with 
only explicit messaging, not shared memory, 
between cores.
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Context: Barrelfish (cont’d)

• Principled, courageous attempt at clean-slate 
design

• If turns out to be necessary and sufficient, 
significant paradigm shift in OS design

• Design principle is leap of faith, with no evidence 
that it is correct (i.e., that prior OS designs and 
shared memory cannot scale)

• Clean-slate design means many years of hard 
work to determine whether viable or superior to 
status quo

• Forcing programmer to do message passing 
inconvenient; turns back on workloads with many 
readers, where shared memory scales fine
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Context: Prior Work on Extending 
Linux to Many Cores

• Boyd-Wickizer et al., OSDI 2010
• Run applications on a 48-core Linux box
• What are scaling bottlenecks in kernel as 

we crank up from 1 to 48 cores?
• Hypothesis: we can fix them by 

developing more multi-core-friendly data 
structures for Linux kernel.

• Result: eliminated several bottlenecks in 
kernel, good speedup to 48 cores
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Context: Many-Core Linux (cont’d)

• Pragmatic: doesn’t start by throwing out today’s OS; if 
successful, easy to adopt improvements

• Empirical: will reveal scaling bottlenecks in Linux if 
they exist, and real workarounds, if designers can 
come up with them

• Not final answer: if you remove bottlenecks to scale to 
48 cores, how about 64?
(OSDI Q: “Can you speculate about more cores?” A: 
“No.”)

• Might be too late: starts from Linux, but original 
design didn’t consider scalability to many cores

• Never know if bottleneck fundamental: if you can’t 
seem to speed up some kernel functionality, is it 
because it can’t scale, or because you haven’t found 
right design yet?
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Enter Scalable Commutativity

• Do interfaces (e.g., system call APIs) limit 
scalability to many cores?
– Here, “scalable” means conflict-free at cache-line 

granularity
• How can we determine if an interface (API) is 

fundamentally amenable to a scalable 
implementation?

• Proposition:
If operations in an interface commute, those 
operations are amenable to an 
implementation that scales in increasing core 
count.
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Scalable Commutativity: Intuition

• What does “commute” mean?
– Operations are system calls
– Regardless of their order of execution, one cannot deduce 

their execution order using the system call interface
– i.e., results of system calls are indistinguishable, regardless 

of their execution order
• Rough idea: if ops commute, their memory accesses 

should be conflict-free. Their results do not depend on 
one another, so they should not share state.

• Conflict-free memory accesses scale on MESI-cache-
coherence-like multi-core architectures

• If ops do not commute, seems their implementations 
should involve RAW or WAR data “dependencies”; 
communication overhead on MESI architectures

12



Why Might Scalable 
Commutativity Rule Be Useful?

• Consider file creation in UNIX
– Two processes creating files in same directory
– Can creat() be made to scale?

• Seems hard: same directory modified
• But in fact:

– If two filenames different, creat() calls commute
– Scalable implementation for this case:

• Directory is hash table indexed by filename
• One lock per hash bucket

• Rule lets you know where to concentrate 
effort in designing for scalability
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Contribution:
SIM Commutativity Definition

• State-dependent: whether two ops commute 
is with respect to state in implementation 
(e.g., open file table, inode contents, name-
to-inode cache contents, &c.)

• Interface-based: ops in question are those in 
a specific API (in this case, OS syscalls); 
define “indistinguishable” only with respect to 
results visible in return values from API 
(ignoring state hidden in implementation)

• Monotonic: in a sequence of calls said to 
commute, all prefixes of sequence must 
commute
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Why Monotonic?

• Suppose we have action sequence
X || Y1 || Y2

• It may be that Y1 || Y2 commutes, but Y1
alone doesn’t:

– Y commutes in any history (every order sets 
value to 2)

– But prefix of first four ops/results does not
• Can’t tell if prefix commutes until knowing 

future operations
• SIM Commutativity excludes such cases
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…continue with Austin Clements’s 
SOSP 2013 slides…
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