The Scalable Commutativity Rule:
Background and Introduction

Brad Karp
UCL Computer Science

A

I

M030/GZ03
4th November 2016

The Multi-Core
Software Design Problem

e Old days:

— CPU frequencies steadily increase
— Take existing binary, runs faster on new CPU

e The multi-core era:

— CPU frequencies cease increasing; heat
dissipation no longer feasible

— Instead, multiple CPUs (cores) on one die

— Legacy, single-threaded binary doesn't
increase in speed as number of cores
InCreases!

Challenges of Writing
Multi-Core Code

e Must divide computation into multiple
threads

e Coordination (locking), communication
(data sharing) between cores costly

— Motivates data structures that eliminate or
minimize locks and their use

e Operating system shared by all
applications and threads
— Data structures in kernel bound to be shared
— Scalable as core count, thread count increase?

3

“Scalable” in Multi-Core Context

e Typically, choose workload (e.g., multi-
threaded application); run on increasing
number of cores

e Plot throughput (“work completed per time")
vS. number of cores

e Desired outcome: linear speedup in number
of cores

e Less preferred: linear up to some K cores,
then flat

e Unscalable: linear up to some K, then
collapse to very low or zero

Background: Data Sharing on
Multi-Core Machines

e What's a "MESI-like protocol™?
— Modified, Exclusive, Shared, Invalid states
— Basically, much like Ivy DSM, but with cache
lines (64 bytes) rather than VM pages (4 KB)

e Many cores can concurrently hold the
same cache line and read it

e To write a cache line, writing core must
have exclusive access to it (i.e., no other
cores may have copy of it)

Multi-Core Sharing (cont’'d)

e Communication between cores occurs when:
— One core writes after another has read
— One core reads after another has written

e Communication between cores may be slow

— Interconnect among cores shared; fetch of cache
line may queue behind other fetches

e False sharing

e Conflict-free memory accesses:

— Set of accesses in which no core writes a cache
line previously read or written by another core

— Linear scaling as number of cores increases

Context: Prior Work on Scalable
Many-Core Oses: Barrelfish

Roscoe et al., SOSP 2009

Modern many-core machines are distributed
systems.

Hypothesis: shared memory cannot scale to
many cores, and encourages programmers to
write code that cannot scale.

Let’s design an OS as a distributed system with
only explicit messaging, not shared memory,
between cores.

Context: Barrelfish (cont’'d)

Principled, courageous attempt at clean-slate
design

If turns out to be necessary and sufficient,
significant paradigm shift in OS design

Design principle is leap of faith, with no evidence
that It is correct (i.e., that prior OS designs and
shared memory cannot scale)

Clean-slate design means ma_mé years of hard
work to determine whether viable or superior to
status quo

Forcing programmer to do message passing
inconvenient; turns back on workloads with many
readers, where shared memory scales fine

Context: Prior Work on Extending
Linux to Many Cores

e Boyd-Wickizer et al., OSDI 2010
e Run applications on a 48-core Linux box

e \What are scaling bottlenecks in kernel as
we crank up from 1 to 48 cores?

e Hypothesis: we can fix them by
developing more multi-core-friendly data
structures for Linux kernel.

o Result: eliminated several bottlenecks in
kernel, good speedup to 48 cores

Context: Many-Core Linux (cont’d)

Pragmatic: doesn't start by throwing out today’s OS; if
successful, easy to adopt improvements

Empirical: will reveal scaling bottlenecks in Linux if
they exist, and real workarounds, if designers can
come up with them

Not final answer: if you remove bottlenecks to scale to
48 cores, how about 64?7
((IRSD’% Q: “Can you speculate about more cores?” A:

0.
Might be too late: starts from Linux, but original
design didn’t consider scalability to many cores

Never know if bottleneck fundamental: if you can't
seem to speed up some kernel functionality, is it
because it can’t scale, or because you haven't found
right design yet?

10

Enter Scalable Commutativity

Do interfaces (e.g., system call APIs) limit
scalability to many cores?

— Here, “scalable” means conflict-free at cache-line
granularity

How can we determine if an interface (API) is
fundamentally amenable to a scalable
implementation?

Proposition:

If operations in an interface commute, those
operations are amenable to an

Imp etmentation that scales in increasing core
count.

11

Scalable Commutativity: Intuition

e What does “commute” mean?
— Operations are system calls

— Regardless of their order of execution, one cannot deduce
their execution order using the system call interface

— i.e., results of system calls are indistinguishable, regardless
of their execution order

e Rough idea: if ops commute, their memory accesses
should be conflict-free. Their results do not depend on
one another, so they should not share state.

e Conflict-free memory accesses scale on MESI-cache-
coherence-like multi-core architectures

e If ops do not commute, seems their implementations
should involve RAW or WAR data “dependencies”;
communication overhead on MESI architectures

12

Why Might Scalable
Commutativity Rule Be Useful?

e Consider file creation in UNIX
— Two processes creating files in same directory
— Can creat() be made to scale?

e Seems hard: same directory modified

e But in fact:
— If two filenames different, creat() calls commute

— Scalable implementation for this case:

e Directory is hash table indexed by filename
e One lock per hash bucket

e Rule lets you know where to concentrate
effort in designing for scalability

13

Contribution:
SIM Commutativity Definition

e State-dependent: whether two ops commute
is with respect to state in implementation
(e.g., open file table, inode contents, name-
to-inode cache contents, &c.)

o Interface-based: ops in question are those in
a specific API (in this case, OS syscalls);
define “indistinguishable” only with respect to
results visible in return values from API
(ignhoring state hidden in implementation)

e Monotonic: in a sequence of calls said to
commute, all prefixes of sequence must
commute

14

Why Monotonic?

e Suppose we have action sequence
XYy (Y
e It may be that Y, || Y, commutes, but Y,
alone doesn't:
Y= = set(1),Iy,El = set(2),D, @ = set(2), 9]

—Y commutes in any history (every order sets
value to 2)

— But prefix of first four ops/results does not

e Can't tell if prefix commutes until knowing
future operations

e SIM Commutativity excludes such cases

15

..continue with Austin Clements’s
SOSP 2013 slides...

16

