
The Scalable Commutativity Rule:
Background and Introduction

Brad Karp
UCL Computer Science

M030/GZ03
4th November 2016

The Multi-Core
Software Design Problem

• Old days:
– CPU frequencies steadily increase
– Take existing binary, runs faster on new CPU

• The multi-core era:
– CPU frequencies cease increasing; heat

dissipation no longer feasible
– Instead, multiple CPUs (cores) on one die
– Legacy, single-threaded binary doesn’t

increase in speed as number of cores
increases!

2

Challenges of Writing
Multi-Core Code

• Must divide computation into multiple
threads

• Coordination (locking), communication
(data sharing) between cores costly
– Motivates data structures that eliminate or

minimize locks and their use
• Operating system shared by all

applications and threads
– Data structures in kernel bound to be shared
– Scalable as core count, thread count increase?

3

“Scalable” in Multi-Core Context

• Typically, choose workload (e.g., multi-
threaded application); run on increasing
number of cores

• Plot throughput (“work completed per time”)
vs. number of cores

• Desired outcome: linear speedup in number
of cores

• Less preferred: linear up to some K cores,
then flat

• Unscalable: linear up to some K, then
collapse to very low or zero

4

Background: Data Sharing on
Multi-Core Machines

• What’s a “MESI-like protocol”?
– Modified, Exclusive, Shared, Invalid states
– Basically, much like Ivy DSM, but with cache

lines (64 bytes) rather than VM pages (4 KB)
• Many cores can concurrently hold the

same cache line and read it
• To write a cache line, writing core must

have exclusive access to it (i.e., no other
cores may have copy of it)

5

Multi-Core Sharing (cont’d)

• Communication between cores occurs when:
– One core writes after another has read
– One core reads after another has written

• Communication between cores may be slow
– Interconnect among cores shared; fetch of cache

line may queue behind other fetches
• False sharing
• Conflict-free memory accesses:

– Set of accesses in which no core writes a cache
line previously read or written by another core

– Linear scaling as number of cores increases

6

Context: Prior Work on Scalable
Many-Core Oses: Barrelfish

• Roscoe et al., SOSP 2009
• Modern many-core machines are distributed

systems.
• Hypothesis: shared memory cannot scale to

many cores, and encourages programmers to
write code that cannot scale.

• Let’s design an OS as a distributed system with
only explicit messaging, not shared memory,
between cores.

7

Context: Barrelfish (cont’d)

• Principled, courageous attempt at clean-slate
design

• If turns out to be necessary and sufficient,
significant paradigm shift in OS design

• Design principle is leap of faith, with no evidence
that it is correct (i.e., that prior OS designs and
shared memory cannot scale)

• Clean-slate design means many years of hard
work to determine whether viable or superior to
status quo

• Forcing programmer to do message passing
inconvenient; turns back on workloads with many
readers, where shared memory scales fine

8

Context: Prior Work on Extending
Linux to Many Cores

• Boyd-Wickizer et al., OSDI 2010
• Run applications on a 48-core Linux box
• What are scaling bottlenecks in kernel as

we crank up from 1 to 48 cores?
• Hypothesis: we can fix them by

developing more multi-core-friendly data
structures for Linux kernel.

• Result: eliminated several bottlenecks in
kernel, good speedup to 48 cores

9

Context: Many-Core Linux (cont’d)

• Pragmatic: doesn’t start by throwing out today’s OS; if
successful, easy to adopt improvements

• Empirical: will reveal scaling bottlenecks in Linux if
they exist, and real workarounds, if designers can
come up with them

• Not final answer: if you remove bottlenecks to scale to
48 cores, how about 64?
(OSDI Q: “Can you speculate about more cores?” A:
“No.”)

• Might be too late: starts from Linux, but original
design didn’t consider scalability to many cores

• Never know if bottleneck fundamental: if you can’t
seem to speed up some kernel functionality, is it
because it can’t scale, or because you haven’t found
right design yet?

10

Enter Scalable Commutativity

• Do interfaces (e.g., system call APIs) limit
scalability to many cores?
– Here, “scalable” means conflict-free at cache-line

granularity
• How can we determine if an interface (API) is

fundamentally amenable to a scalable
implementation?

• Proposition:
If operations in an interface commute, those
operations are amenable to an
implementation that scales in increasing core
count.

11

Scalable Commutativity: Intuition

• What does “commute” mean?
– Operations are system calls
– Regardless of their order of execution, one cannot deduce

their execution order using the system call interface
– i.e., results of system calls are indistinguishable, regardless

of their execution order
• Rough idea: if ops commute, their memory accesses

should be conflict-free. Their results do not depend on
one another, so they should not share state.

• Conflict-free memory accesses scale on MESI-cache-
coherence-like multi-core architectures

• If ops do not commute, seems their implementations
should involve RAW or WAR data “dependencies”;
communication overhead on MESI architectures

12

Why Might Scalable
Commutativity Rule Be Useful?

• Consider file creation in UNIX
– Two processes creating files in same directory
– Can creat() be made to scale?

• Seems hard: same directory modified
• But in fact:

– If two filenames different, creat() calls commute
– Scalable implementation for this case:

• Directory is hash table indexed by filename
• One lock per hash bucket

• Rule lets you know where to concentrate
effort in designing for scalability

13

Contribution:
SIM Commutativity Definition

• State-dependent: whether two ops commute
is with respect to state in implementation
(e.g., open file table, inode contents, name-
to-inode cache contents, &c.)

• Interface-based: ops in question are those in
a specific API (in this case, OS syscalls);
define “indistinguishable” only with respect to
results visible in return values from API
(ignoring state hidden in implementation)

• Monotonic: in a sequence of calls said to
commute, all prefixes of sequence must
commute

14

Why Monotonic?

• Suppose we have action sequence
X || Y1 || Y2

• It may be that Y1 || Y2 commutes, but Y1
alone doesn’t:

– Y commutes in any history (every order sets
value to 2)

– But prefix of first four ops/results does not
• Can’t tell if prefix commutes until knowing

future operations
• SIM Commutativity excludes such cases

15

…continue with Austin Clements’s
SOSP 2013 slides…

16

