
Background: I/O Concurrency

Brad Karp
UCL Computer Science

CS GZ03 / M030
12th October 2015



2

Outline

• “Worse Is Better” and Distributed Systems

• Problem: Naïve single-process server 
leaves system resources idle; I/O blocks
– Goal: I/O concurrency
– Goal: CPU concurrency

• Solutions
– Multiple processes
– One process, many threads
– Event-driven I/O (not in today’s lecture)



3

Review: How Do Servers Use Syscalls?

• Consider server_1() web server (in 
handout)

time

time

time
application CPU

disk syscalls

network syscalls

R

R W W

R

C



4

Review: How Do Servers Use Syscalls?

• Consider server_1() web server (in 
handout)

time

time

time
application CPU

disk syscalls

network syscalls

Server waits for each resource in turn
Each resource largely idle
What if there are many clients?

R

R W W

R

C



5

Performance and Concurrency

• Under heavy load, server_1():
– Leaves resources idle
– …and has a lot of work to do!

• Why?
– Software poorly structured!
– What would a better structure look like?



6

Solution: I/O Concurrency

• Can we overlap I/O with other useful 
work? Yes:
– Web server: if files in disk cache, I/O wait 

spent mostly blocked on write to network
– Networked file system client: could compile 

first part of file while fetching second part
• Performance benefits potentially huge

– Say one client causes disk I/O, 10 ms
– If other clients’ requests in cache, could serve 

100 other clients during that time!



7

One Process
May Be Better Than You Think

• OS provides I/O concurrency to 
application transparently when it can, e.g.,
– Filesystem does read-ahead into disk buffer 

cache; write-behind from disk buffer cache
– Networking code copies arriving packets into 

application’s kernel socket buffer; copies app’s 
data into kernel socket buffer on write()



8

I/O Concurrency with
Multiple Processes

• Idea: start new UNIX process for each client 
connection/request

• Master process assigns new connections to child 
processes

• Now plenty of work to keep system busy!
– One process blocks in syscall, others can process 

arriving requests
• Structure of software still simple

– See server_2() in webserver.c
– fork() after accept()
– Otherwise, software structure unchanged!



9

Multiple Processes: More Benefits

• Isolation
– Bug while processing one client’s request 

leaves other clients/requests unaffected
– Processes do interact, but OS arbitrates (e.g., 

“lock the disk request queue”)
• CPU concurrency for “free”

– If more than one CPU in box, each process 
may run on one CPU



10

CPU Concurrency

• Single machine may have multiple CPUs, one 
shared memory
– Symmetric Multiprocessor (SMP) PCs
– Intel Core Duo

• I/O concurrency tools often help with CPU 
concurrency
– But way more work for OS designer!

• Generally, CPU concurrency way less important 
than I/O concurrency
– Factor of 2X, not 100X
– Very hard to program to get good scaling
– Easier to buy 2 machines (see future lectures!)



11

Problems with Multiple Processes

• fork() may be expensive
– Memory for new address space
– 300 us minimum on modern PC running UNIX

• Processes fairly isolated by default
– Memory not shared
– How do you build web cache on server visible 

to all processes?
– How do you simply keep statistics?



12

Concurrency with Threads

• Similar to multiple processes
• Difference: one address space

– All threads share same process’ memory
– One stack per thread, inside process

• Seems simple: single-process structure!
• Programmer needs to use locks
• One thread can corrupt another (i.e., no 

cross-request isolation)



13

Concurrency with Threads

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App20 0

N
M

t1
stack

t2
stack



14

Threads: Low-Level Details Are Hard!

• Suppose thread calls read() (or other 
blocking syscall)
– Does whole process block until I/O done?
– If so, no I/O concurrency!

• Two solutions:
– Kernel-supported threads
– User-supported threads



15

Kernel-Supported Threads

• OS kernel aware of each thread
– Knows if thread blocks, e.g., disk read wait
– Can schedule another thread

• Kernel requirements:
– Per-thread kernel stack
– Per-thread tables (e.g., saved registers)

• Semantics:
– Per-process: address space, file descriptors
– Per-thread: user stack, kernel stack, kernel 

state



16

Kernel-Supported Threads

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App20 0

N
M

t1
stack

stack,
table

t2
stack

stack, 
table



17

Kernel Threads: Trade-Offs

• Kernel can schedule one thread per CPU
– Fits our goals well: both CPU and I/O concurrency

• But kernel threads expensive, like processes:
– Kernel must help create each thread
– Kernel must help with thread context switch!

• Which thread took a page fault?
– Lock/unlock must invoke kernel, but heavily used

• Kernel threads not portable; implementation 
heavily tailored to each OS



18

User-Level Threads

• Purely inside user process; kernel 
oblivious

• Scheduler within user process for process’ 
own threads
– In addition to kernel’s process scheduler

• User-level scheduler must
– Know when thread makes blocking syscall
– Not block process; switch to another thread
– Know when I/O done, to wake up original 

thread



19

User-Level Thread Implementation

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App20 0

N
M

t1
stack

t2
stack

Thread Scheduler

Process Scheduler



20

User-Level Threads: Details

• Apps linked against thread library
• Library contains “fake” read(), write(), 

accept(), &c. syscalls
• Library can start non-blocking syscall 

operations
• Library marks threads as waiting, switches 

to runnable thread
• Kernel notifies library of I/O completion 

and other events; library marks waiting 
thread runnable



21

User-Level Threads: read() Example

read() {
tell kernel to start read;
mark thread waiting for read;
sched();

}
sched() {

ask kernel for I/O completion events;
mark corresponding threads runnable;
find runnable thread;
restore registers and return;

}



22

User-Level Threads:
Event Notification

• Events thread library needs from kernel:
– new network connection
– data arrived on socket
– disk read completed
– socket ready for further write()s

• Resembles miniature OS inside process!
• Problem: user-level threads demand 

significant kernel support:
– non-blocking system calls
– uniform event delivery mechanism



23

Event Notification in Typical OSes

• Usually, event notification only partly 
supported; e.g., in UNIX:
– new TCP connections, arriving TCP/pipe/tty

data: YES
– filesystem operation completion: NO

• Similarly, not all syscalls can be started 
without waiting, e.g., in UNIX:
– connect(), read()/write() on socket
– open(), stat(): NO
– read() from disk: SOMETIMES (e.g., 

aio_read())



• Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

} 24

Non-blocking System Calls:
Hard to Implement



• Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

} 25

Non-blocking System Calls:
Hard to Implement

Why not just return to user program instead 
of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?



• Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

} 26

Non-blocking System Calls:
Hard to Implement

Why not just return to user program instead 
of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?

Problem: Keeping state for complex, multi-
step operations



27

User-Threads:
Implementation Choices

• Live with only partial support for user-level 
threads

• New operating system with totally 
different syscall interface
– One syscall per non-blocking “sub-operation”
– Kernel doesn’t need to keep state across 

multiple steps
– e.g., lookup_one_path_component()

• Microkernel: no system calls, just 
messages to servers, with non-blocking 
communication



28

Threads: Programming Difficulty

• Sharing of data structures in one address space
• Even on single CPU, thread model necessitates 

CPU concurrency
– Locks often needed for mutual exclusion on data 

structures
– May only have wanted to overlap I/O wait!

• Events usually occur one-at-a-time
– Can we do CPU sequentially, and overlap only wait for 

I/O?
– Yes: event-driven programming



29

Event-Driven Programming

• Foreshadowed by user-level threads 
implementation
– Organize software around event arrival

• Write software in state-machine style
– “When event X occurs, execute this function.”

• Library support for registering interest in events 
(e.g., data available to read())

• Desirable properties:
– Serial nature of events preserved
– Programmer sees only one event/function at a time


