Distributed Systems and Security:
An Introduction

Brad Karp
UCL Computer Science

A

i

CS GzZ03 / M030
oth October 2015

Today’s Lecture

Administrivia
Overview of Distributed Systems
— What are they?

— Why build them?
— Why are they hard to build well?

Operating Systems Background
Questionnaire

Prerequisites

e Undergraduates: must have taken UCL CS
3035, Networked Systems, or equivalent
experience (3"-year undergrad
networking class, covering Internet
protocols and architecture in depth)

e Graduates: must be concurrently enrolled
in UCL CS GZ01, Networked Systems, or
equivalent prior experience (3"-year
undergrad networking class, covering

Internet protocols and architecture in
depth)

Course Staff and Office Hours

e Instructor:
— Brad Karp, MPEB 6.20, Tue 5 — 6 PM, ext. 30406

e Teaching Assistant:

— Steve Dodier-Lazaro, MPEB 6.07,
Wed 4:10 — 5:10 PM, ext. 33644

o Office hours begin next Tuesday
e Time reserved for answering your questions

e Qutside office hours, email to schedule
appointment

Meeting Times and Locations

(Most) Mondays 11 AM - 12:30 PM,
25 Gordon Street (Math), Room 500

(Most) Wednesdays 9:30 — 11 AM,
16 Taviton St. (SSEES), Room 347

(A Few) Fridays 5 — 6:30 PM,
Chadwick BO5 LT
Lecture will usually run 90 minutes

Occasionally lecture will be followed by a 30-
minute discussion of an additional topic (e.g., Q&A
on a coursework); on these dates, full two hours!

No lecture (5%, 7t October); 25t November; 16t
December

Reading week: 9t — 13t November, no lecture!

Class Communication

e Class web page
— http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2015/
— Detailed calendar, coursework, class policies
— Your responsibility: check page daily!

e M030/GZ03 Piazza Page

— https://piazza.com/ucl.ac.uk/fall2015/
computersciencem030gz03

— Important announcements from class staff (also
forwarded to you by email)

— Postings from class staff and students

— Subscribe using enrollment key

— You must subscribe (class policy)

— Your responsibility: check email daily!

Using Piazza

e Please post questions on class material on
Piazza, rather than emailing course staff

e Whole class benefits from seeing your
guestion and its answer

e Students are encouraged to answer one
another’s questions!

e When discussing something private (e.qg.,
your marks, or details of your specific
solution to a coursework), mark your post
as private, so only class staff see it!

Readings, Lectures, and
Lecture Notes

e Readings must be read before lecture;
lectures assume you have done so

e | ecture notes will be posted to the class
web site just after lecture

e Class calendar shows all reading
assignments day by day...

Readings

e No textbook

e Classic and recent research papers on real,
built distributed and secure systems

e Available on class web page; print these
yourselves

e All readings examinable

e Research papers are dense and complex;
they are often challenging

— Be prepared to read and re-read the papers

— Come to lecture with questions, and/or use office
hours

Grading

e Final grade components:
— One programming coursework: 15%
— One problem set coursework: 15%
— Final exam: 70%

10

Late Work Policy

e N.B. that M030/GZ03 policy differs from that
for other CS classes!

e For every day late or fraction thereof, including
weekend days, 10% of marks deducted

e Each student receives budget of 3 late days for
entire term
— Each late day “cancels” one day of lateness

— Goal: give you flexibility, e.g., in case you can't find a
bug, or encounter unexpected other snag

— You declare how many late days to use when turning
in @ coursework late; cannot declare or change later!

— Must use whole late days—cannot use fractional
ones! 11

Late Days (cont'd)

o If submission more than 2 days late after
taking late days into account, zero marks

e Programming courseworks turned in
onhline; may be submitted 24/7

e Problem set courseworks turned in on
paper in lecture; can be submitted M — F
only

— Weekend days after deadline still count as
elapsed days

12

Late Days (cont'd)

o If submission more than 2 days late after
taking late days into account, zero marks

(" Late days give you flexibility. B
No other extensions glven on COUI‘SGWOI‘k

unless for unforeseeable, severely
extenuating circumstances!

\. ,
paper in [ecture; can be submitted M — F
only

— Weekend days after deadline still count as
elapsed days

13

Academic Honesty

e All courseworks must be completed
individually

e May discuss understanding of problem
statement, general sketch of approach

e May not discuss details of solution

e May not show your solution to others (this
year or in future years)

e May not look at others’ solutions (this year
or from past years)

14

Academic Honesty (cont'd)

e We use code comparison software
— Compares parse trees; immune to obfuscation

— Produces color-coded all-student-pairs code
comparisons

e Don‘t copy code—you will be caught!

e Penalty for copying: automatic zero
marks, referral for disciplinary action by
UCL (usually leads to exclusion from all
exams at UCL)

15

Today’s Lecture

Administrivia
Overview of Distributed Systems
— What are they?

— Why build them?
— Why are they hard to build well?

Operating Systems Background
Questionnaire

16

What Is a Distributed System?

e Multiple computers (“machines,” “hosts,”
“boxes,” &c.)

— Each with CPU, memory, disk, network
interface

— Interconnected by LAN or WAN (e.qg.,
Internet)

e Application runs across this dispersed
collection of networked hardware

e But user sees single, unified system

17

What Is a Distributed System?
(Alternate Take)

“A distributed system is a system in which I
can’t do my work because some computer
that I've never even heard of has failed.”

— Leslie Lamport, Microsoft Research (ex DEC),
2013 Turing Award winner

18

Start Simple: Centralized System

e Suppose you run Gmail

e Workload:

— Inbound email arrives; store on disk
— Users retrieve, delete their email

e You run Gmail on one server with disk

Email

Email ;
Sender Email
Reader \ - / Sender
Gmail . —

Email L) gerver (PC)

Reader \ Email
Email 4 Sender

Reader

Start Simple: Centralized System

e Suppose you run Gmail
o Workload:

[Wha;: ére sHortc&miﬁgs of this degién?

e You run Gmail on one server with disk

) Email
Email

Sender Email
_ Gmail [— |
Email L) gerver (PC)

Email - Sender

Reader

Why Distribute?
For Availability

e Suppose Gmail server goes down, or network
between client and it goes down

e No incoming mail delivered, no users can read
their inboxes

e Fix: replicate the data on several servers
— Increased chance some server will be reachable

— Consistency? One server down when delete message,
then comes back up; message returns in inbox

— Latency? Replicas should be far apart, so they fail
independently

— Partition resilience? e.g., airline seat database splits,
one seat remains, bought twice, once in each half!

21

Why Distribute?
For Scalable Capacity

e What if Gmail a huge success?
e Workload exceeds capacity of one server

e Fix: spread users across several servers

— Best case: linear scaling—if U users per box,
N boxes support NU users

— Bottlenecks? If each user’s inbox on one
server, how to route inbound mail to right
server?

— Scaling? How close to linear?

— Load balance? Some users get more mail than
others!

22

Performance Can Be Subtle

e Goal: predictable performance under high
load

e 2 employees run a Starbucks

— Employee 1: takes orders from customers,
calls them out to Employee 2

— Employee 2:
e writes down drink orders (5 seconds per order)
e makes drinks (10 seconds per order)

e What is throughput under increasing load?

23

Starbucks Throughput

starbucks data" —+—

35 ¢
3 |
25 1
2 L
1.5
1t

Drinks per minute (output)

05 r
0

0 2 4 6 8 10 12
Orders per minute (offered load)

e Peak system performance: 4 drinks / min
o What happens when load > 4 orders / min?
e \What happens to efficiency as load increases?

24

Starbucks Throughput

starbucks data" —+—

35 ¢
3 |
25 1
2 L
1.5

Drinks per minute (output)

1L
0.5

0 1 1 1 1 1
0 2 4 6 8 10 12
Orders per minute (offered load)

_

" What would preferable curve be?

What design achieves that goal?

Why Are Distributed Systems
Hard to Design?

Failure: of hosts, of network

— Remember Lamport’s lament
Heterogeneity

— Hosts may have different data representations

Need consistency (many specific definitions)
— Users expect familiar “centralized” behavior

Need concurrency for performance
— Avoid waiting synchronously, leaving resources idle
— Overlap requests concurrently whenever possible

26

Security

e Before Internet:

— Encryption and authentication using cryptography
— Between parties known to each other (e.qg.,
diplomatic wire)
e Today:
— Entire Internet of potential attackers

— Legitimate correspondents often have no prior
relationship

— Online shopping: how do you know you gave credit
card number to amazon.com? How does amazon.com
know you are authorized credit card user?

— Software download: backdoor in your new browser?
— Software vulnerabilities: remote infection by worms!
— Crypto not enough alone to solve these problems!

27

