User Authentication and Cryptographic Primitives

Brad Karp
UCL Computer Science

CS GZ03 / M030 16 ${ }^{\text {th }}$ November 2015

Outline

- Authenticating users
- Local users: hashed passwords
- Remote users: s/key
- Unexpected covert channel: the Tenex passwordguessing attack
- Symmetric-key-cryptography
- Public-key cryptography usage model
- RSA algorithm for public-key cryptography
- Number theory background
- Algorithm definition

Dictionary Attack on Hashed Password Databases

- Suppose hacker obtains copy of password file (until recently, world-readable on UNIX)
- Compute $\mathrm{H}(\mathrm{x})$ for 50K common words
- String compare resulting hashed words against passwords in file
- Learn all users' passwords that are common English words after only 50K computations of $\mathbf{H}(x)$!
- Same hashed dictionary works on all password files in world!

Salted Password Hashes

- Generate a random string of bytes, r
- For user password x, store $[H(r, x), r]$ in password file
- Result: same password produces different result on every machine
- So must see password file before can hash dictionary
- ...and single hashed dictionary won't work for multiple hosts
- Modern UNIX: password hashes salted; hashed password database readable only by root

Salted Password Hashes

- Generate a random string of bytes, r

Dictionary attack still possible after attacker sees password file!
 Users should pick passwords that aren't close to dictionary words.

- So must see password file betore can hasn dictionary
- ...and single hashed dictionary won't work for multiple hosts
- Modern UNIX: password hashes salted; hashed password database readable only by root

Tenex Password Attack: An Information Leak

- Tenex OS stored directory passwords in cleartext
- OS supported system call:
- pw_validate(directory, pw)
- Implementation simply compared pw to stored password in directory, char by char
- Clever attack:
- Make pw span two VM pages, put $1^{\text {st }}$ char of guess in first page, rest of guess in second page
- See whether get a page fault-if not, try next value for $1^{\text {st }}$ char, \&c.; if so, first char correct!
- Now position $2^{\text {nd }}$ char of guess at end of $1^{\text {st }}$ page, \&c.
- Result: guess password in time linear in length! ${ }^{6}$

Tenex Password Attack： An Information Leak

－Tenex OS stored directory passwords in
alへ口иものット

Lessons：

Don＇t store passwords in cleartext．
Information leaks are real，and can be extremely difficult to find and eliminate．
－Clever attack：
－Make pw span two VM pages，put $1^{\text {st }}$ char of guess in first page，rest of guess in second page
－See whether get a page fault－if not，try next value for $1^{\text {st }}$ char，\＆c．；if so，first char correct！
－Now position $2^{\text {nd }}$ char of guess at end of $1^{\text {st }}$ page，\＆c．
－Result：guess password in time linear in length？

Remote User Authentication

- Consider the case where Alice wants to log in remotely, across LAN or WAN from server
- Suppose network links can be eavesdropped by adversary, Eve
- Want scheme immune to replay: if Eve overhears messages, shouldn't be able to log in as Alice by repeating them to server
- Clear non-solutions:
- Alice logs in by sending \{alice, password\}
- Alice logs in by sending \{alice, H(password)\}

Remote User Authentication (2)

- Desirable properties:
- Message from Alice must change unpredictably at each login
- Message from Alice must be verifiable at server as matching secret value known only to Alice
- Can we achieve these properties using only a cryptographic hash function?

Remote User Authentication: s/key

- Denote by $\mathrm{H}^{\mathrm{n}}(\mathrm{x}) \mathrm{n}$ successive applications of cryptographic hash function H() to x
- i.e., $H^{3}(x)=H(H(H(x)))$
- Store in server's user database:
alice:99: ${ }^{\text {H9 }}$ (password)
- At first login, Alice sends:
\{alice, H^{98} (password)\}
- Server then updates its database to contain:

$$
\text { alice:98: } \mathrm{H}^{98} \text { (password) }
$$

- At next login, Alice sends:
\{alice, H^{97} (password) \}
- and so on...

Properties of s/key

- Just as with any hashed password database, Alice must store her secret on the server securely (best if physically at server's console)
- Alice must choose total number of logins at time of storing secret
- When logins all "used", must store new secret on server securely again

Secrecy through Symmetric Encryption

- Two functions: E() encrypts, D() decrypts
- Parties share secret key K
- For message M :
$-E(K, M) \rightarrow C$
$-D(K, C) \rightarrow M$
- M is plaintext; C is ciphertext
- Goal: attacker cannot derive M from C without K

Idealized Symmetric Encryption: One-Time Pad

- Secretly share a truly random bit string P at sender and receiver
- Define \oplus as bit-wise XOR
- $C=E(M)=M \oplus P$
- $M=D(C)=C \oplus P$
- Use bits of P only once; never use them again!

Stream Ciphers: Pseudorandom Pads

- Generate pseudorandom bit sequence (stream) at sender and receiver from short key
- Encrypt and decrypt by XOR'ing message with sequence, as with one-time pad
- Most widely used stream cipher: RC4
- Again, never, ever re-use bits from pseudorandom sequence!
- What's wrong with reusing the stream?
- Alice \rightarrow Server: $c_{1}=E(s$, "Visa card number")
- Server \rightarrow Alice: $c_{2}=E(s$, "Transaction confirmed")
- Suppose Eve hears both messages
- Eve can compute:
$\mathrm{m}=\mathrm{C}_{1} \oplus \mathrm{C}_{2} \oplus$ "Transaction confirmed"

Symmetric Encryption: Block Ciphers

- Divide plaintext into fixed-size blocks (typically 64 or 128 bits)
- Block cipher maps each plaintext block to same-length ciphertext block
- Best today to use AES (others include Blowfish, DES, ...)
- Of course, message of arbitrary length; how to encrypt message of more than one block?

Using Block Ciphers: ECB Mode

- Electronic Code Book method
- Divide message M into blocks of cipher's block size
- Simply encrypt each block individually using the cipher
- Send each encrypted block to receiver
- Presume cipher provides secrecy, so attacker cannot decrypt any block
- Does ECB mode provide secrecy?

Avoid ECB Mode!

- ECB mode does not provide robust secrecy!
- What if there are repeated blocks in the plaintext? Repeated as-is in ciphertext!
- What if sending sparse file, with long runs of zeroes? Non-zero regions obvious!
- WW II U-Boat example (Bob Morris):
- Each day at same time, when no news, send encrypted message: "Nichts zu melden."
- When there's news, send the news at that time.
- Obvious when there's news
- Many, many ciphertexts of same known plaintext made available to adversary for cryptanalysis-a worry even if encryptions of same plaintext produce different ciphertexts!

Using Block Ciphers: CBC Mode

- Better plan: make encryptions of successive blocks depend on one another, and initialization vector known to receiver

Integrity with Symmetric Crypto: Message Authentication Codes

- How does receiver know if message modified en route?
- Message Authentication Code:
- Sender and receiver share secret key K
- On message M, v = MAC(K, M)
- Attacker cannot produce valid $\{\mathrm{M}, \mathrm{v}\}$ without K
- Append MAC to message for tamper-resistance:
- Sender sends $\{\mathrm{M}, \mathrm{MAC}(\mathrm{K}, \mathrm{M})\}$
- M could be ciphertext, $M=E\left(K^{\prime}, m\right)$
- Receiver of $\{M, v\}$ can verify that $v=\operatorname{MAC}(K, M)$
- Beware replay attacks-replay of prior $\{\mathrm{M}, \mathrm{v}\}$ by Eve!

HMAC: A MAC Based on Cryptographic Hash Functions

- $\operatorname{HMAC}(\mathrm{K}, \mathrm{M})=$ $\mathrm{H}(\mathrm{K} \oplus$ opad . $\mathrm{H}(\mathrm{K} \oplus$ ipad . M $)$)
- where:
- . denotes string concatenation
- opad $=64$ repetitions of 0×36
- ipad = 64 repetitions of $0 x 5 \mathrm{c}$
-H() is a cryptographic hash function, like SHA256
- Fixed-size output, even for long messages

Public-Key Encryption: Interface

- Two keys:
- Public key: K, published for all to see
- Private (or secret) key: K^{-1}, kept secret
- Encryption: $\mathrm{E}(\mathrm{K}, \mathrm{M}) \rightarrow\{\mathrm{M}\}_{\mathrm{K}}$
- Decryption: $\mathrm{D}\left(\mathrm{K}^{-1},\{\mathrm{M}\}_{\mathrm{K}}\right) \rightarrow \mathrm{M}$
- Provides secrecy, like symmetric encryption:
- Can't derive M from $\{\mathrm{M}\}_{K}$ without knowing K^{-1}
- Same public key used by all to encrypt all messages to same recipient
- Can't derive K^{-1} from K

Number Theory Background: Modular Arithmetic Primer (1)

- Recall the "mod" operator: returns remainder left after dividing one integer by another, the modulus
- e.g., $15 \bmod 6=3$
- That is:
a mod $n=r$
which just means
$a=k n+r \quad$ for some integers k and r
- Note that $0<=r<n$

Modular Arithmetic Primer (2)

- In modular arithmetic, constrain range of integers to be only the residues [0, $n-1]$, for modulus n
- e.g., $(12+13) \bmod 24=1$
- We may also write $12+13 \equiv 1(\bmod 24)$
- Modular arithmetic retains familiar properties: commutative, associative, distributive
- Same results whether mod taken at each arithmetic operation, or only at end, e.g.: $(a+b) \bmod n=((a \bmod n)+(b \bmod n)) \bmod n$ (ab) $\bmod n=(a \bmod n)(b \bmod n) \bmod n$

Modular Arithmetic: Advantages

- Limits precision required: working mod n , where n is k bits long, any single arithmetic operation yields at most 2 k bits
- ...so results of even seemingly expensive ops, like exponentiation (a^{x}) fit in same number of bits as original operand(s)
- Lower precision means faster arithmetic
- Some operations in modular arithmetic are computationally very difficult:
- e.g., computing discrete logarithms: find integer x s.t. $a^{x} \equiv b(\bmod n)$

Modular Arithmetic: Advantages

- Limits precision required: working mod n , where n is k bits long, any single arithmetic operation yields at most 2 k bits

Cryptography leverages "difficult" operations; want reversing encryption without key to be computationally intractable!

- Some operations in modular arithmetic are computationally very difficult:
- e.g., computing discrete logarithms: find integer x s.t. $a^{x} \equiv b(\bmod n)$

Modular Arithmetic: Inverses (1)

- In real arithmetic, every integer has a multiplicative inverse-its reciprocal-and their product is 1
-e.g., $7 \mathrm{x}=1 \rightarrow \mathrm{x}=(1 / 7)$
- What does an inverse in modular arithmetic (say, mod 11) look like?

$$
7 x \equiv 1(\bmod 11)
$$

- that is, $7 \mathrm{x}=11 \mathrm{k}+1$ for some x and k
- so $x=8$ (where $k=5$)

Aside: Prime Numbers

- Recall: prime number is integer >1 that is evenly divisible only by 1 and itself
- Two integers a and b are relatively prime if they share no common factors but 1 ; i.e., if $\operatorname{gcd}(a, b)=1$
- There are infinitely many primes
- Large primes (512 bits and longer) figure prominently in public-key cryptography

Modular Arithmetic: Inverses (2)

- In general, finding modular inverse means finding x s.t. $a^{-1} \equiv x(\bmod n)$
- Does modular inverse always exist?
- No! Consider $2^{-1} \equiv x(\bmod 8)$
- In general, when a and n are relatively prime, modular inverse x exists and is unique
- When a and n not relatively prime, x doesn't exist
- When n prime, all of [1...n-1] relatively prime to n, and have an inverse in that range

Modular Arithmetic: Inverses (2)

Algorithm to find modular inverse: extended Euclidean Algorithm. Tractable; requires $\mathbf{O}(\log \mathrm{n})$ divisions.

- In general, when a and n are relatively prime, modular inverse x exists and is unique
- When a and n not relatively prime, x doesn't exist
- When n prime, all of [1...n-1] relatively prime to n, and have an inverse in that range

Euler's Phi Function: Efficient Modular Inverses on Relative Primes

- $\varphi(\mathrm{n})=$ number of integers $<\mathrm{n}$ that are relatively prime to n
- If n prime, $\varphi(\mathrm{n})=\mathrm{n}-1$
- If $n=p q$, where p and q prime: $\varphi(n)=(p-1)(q-1)$
- If a and n relatively prime, Euler's generalization of Fermat's little theorem:

$$
a^{\varphi(n)} \bmod n=1
$$

- and thus, to find inverse x s.t. $x=a^{-1} \bmod n$:

$$
x=a \Phi(n)-1 \bmod n
$$

RSA Algorithm (1)

- [Rivest, Shamir, Adleman, 1978]
- Recall that public-key cryptosystems use two keys per user:
- K, the public key, made available to all
$-K^{-1}$, the private key, kept secret by user

RSA Algorithm (2)

- Choose two random, large primes, p and q, of equal length, and compute $n=p q$
- Randomly choose encryption key e, s.t. e and ($\mathrm{p}-1$) $(\mathrm{q}-1)$ are relatively prime
- Use extended Euclidean algorithm to compute d, s.t. $d=e^{-1} \bmod ((p-1)(q-1))$
- Public key: $K=(e, n)$
- Private key: $\mathrm{K}^{-1}=\mathrm{d}$
- Discard p and q

RSA Algorithm (3)

- Encryption:
- Divide message M into blocks m_{i}, each shorter than n
- Compute ciphertext blocks c_{i} with: $c_{i}=m_{i}^{e} \bmod n$
- Decryption
- Recover plaintext blocks m_{i} with: $m_{i}=c_{i}^{d} \bmod n$

Why Does RSA Decryption Recover Original Plaintext?

- Observe that $c_{i}^{d}=\left(m_{i}^{e}\right)^{d}=m_{i}^{\text {ed }}$
- Note that ed $\equiv 1(\bmod (p-1)(q-1))$
because e and d are inverses $\bmod (p-1)(q-1)$
- So:

$$
\begin{aligned}
& e d \equiv 1(\bmod (p-1)) \text {, and thus ed }=k(p-1)+1 \\
& e d \equiv 1(\bmod (q-1)) \text {, and thus ed }=h(q-1)+1
\end{aligned}
$$

- Consider case where m_{i} and p are relatively prime: $m^{(p-1)} \equiv 1(\bmod p)$ by Euler's generalization of Fermat's little theorem
- so $m_{i}^{\text {ed }}=m_{i}^{k(p-1)+1}=m_{i}\left(m_{i}^{(p-1)}\right)^{k} \equiv m_{i}(\bmod p)$
- And case where m_{i} a multiple of p :

$$
\mathrm{m}_{\mathrm{i}}^{\mathrm{ed}}=0^{\mathrm{ed}}=0 \equiv \mathrm{~m}_{\mathrm{i}}(\bmod \mathrm{p})
$$

- Thus in all cases, $m_{i}^{\text {ed }} \equiv m_{i}(\bmod p)$

Why Does RSA Decryption Recover Original Plaintext? (2)

- Similarly, $\mathrm{m}_{\mathrm{i}}^{\text {ed }} \equiv \mathrm{m}_{\mathrm{i}}(\bmod \mathrm{q})$
- Now:

$$
\begin{aligned}
& m_{i \text { ed }}^{\mathrm{m}_{\text {ed }}}-\mathrm{m}_{\mathrm{i}} \equiv 0(\bmod \mathrm{p}) \\
& \mathrm{m}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}} \equiv 0(\bmod)
\end{aligned}
$$

- Because p, q both prime and distinct:

$$
m_{i}^{\text {ed }}-m_{i}=0(\bmod (p q))
$$

- $\operatorname{So} c_{i}^{d}=m_{i}^{\text {ed }} \equiv m_{i}(\bmod n)$

