Managing Heavy Network Load:
Eliminating Receive Livelock

Brad Karp
UCL Computer Science

A

i

CS GZ03 / M030
4th November 2015

Engineering for Performance

e Much of the work in distributed systems
concerns designing for
— Consistency
— Availability
— Performance
e Performance is multi-faceted

— Not just determined by design of distributed
system itself (algorithms, protocols)

— Low-level hardware, OS behavior play major role

e Achieving high performance requires deep
understanding of all layers: hardware, OS,
all the way through algorithms and protocols!

2

Engineering for Performance

g Systems Thinking: the ability to reason about o
complex interactions among many layers, to find
problems (and (re)design to avoid them))

UTITCY
— Performance

e Performance is multi-faceted

— Not just determined by design of distributed
system itself (algorithms, protocols)

— Low-level hardware, OS behavior play major role
e Achieving high performance requires deep

understanding of all layers: hardware, OS,
all the way through algorithms and protocols!

3

Heavy Load Happens

e Servers have limited CPU, network link
capacity, memory, disk bandwidth

e Demand often approaches or exceeds a
server’s capacity, e.g.,
— Flash crowds at web server
— Busy NFS server as client population grows
— IP router or firewall carrying flash crowd traffic
(or denial of service attack traffic!)

e But software design can limit performance
at loads lighter than where these hardware
limits kick in...

Example:
IP Packet Forwarding Performance

e Hardware: commodity workstation
(DECstation 3000/300; PC-like), two 10
Mbps Ethernet interfaces

e Software: Digital UNIX 3.2 OS, screend
firewall application in userspace

e Workload: forward IP packets from one
Ethernet to another (UDP packets, 4 bytes
of payload each)

e Packet-generating host has faster CPU
than forwarder

Example:
IP Packet Forwarding Performance

g Question: How well does whole system scale as A
load increases?

Experiment: vary input packet rate to forwarder;
observe output packet rate

firewall application in userspace

e Workload: forward IP packets from one

Ethernet to another (UDP packets, 4 bytes
of payload each)

e Packet-generating host has faster CPU
than forwarder

J

Example:
IP Packet Forwarding Performance

5000 | |
o

Q
24000 R S _
‘g 3000 — .o ¢ .0. Without screend]
= ® o '
o)
S 2000 o 0 O o ®]
S [
¥ @ n
‘é u [0 With screend ®
£ 1000 |- m O —
o] o

0 | | 5 |0 O0mmm g |

0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

e Peak output rate w/o firewall: ~4700 pkt/s

e Beyond ~4700 pkt/s, output rate
decreases with further increasing load!

Example:
IP Packet Forwarding Performance

5000 |

o

)
24000 oo S _
g 3000 — .o ¢ .0. Without screend]
= ® o '
o)
S 2000 o 0 O o ®]
S [
¥ @ n
‘é u [0 With screend ®
£ 1000 |- m O —
o] o

0 | | 5 |0 O0mmm g |

0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

g Suppose hardware’s capacity is 4700 pkt/s.

What would ideal system behavior be beyond that
g iInput rate?

Example:
IP Packet Forwarding Performance

5000 | | | |
~ [
Q
24000 oo S _
g 3000 — .o ¢ .0. Without screend]
= ® o '
o)
S 2000 o 0 O o ®]
S [
¥ @ n
‘é u [0 With screend ®
£ 1000 |- m O —
o] o
0 | | 5 |0 O0mmm g |
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

g Suppose hardware’s capacity is 4700 pkt/s.

What would ideal system behavior be beyond that
g iInput rate?

Background:
I/0 Device Hardware

e /O devices need to notify CPU of events
— Packet arrival at network interface
— Disk read complete
— Key pressed on keyboard

e Two main ways CPU can learn of events:

— Polling: CPU “asks” hardware device if any events
have occurred (synchronous)

— Interrupt: hardware device sends a signal to CPU
saying “events have completed” (asynchronous)

e Key concerns: event latency and CPU load

10

Polling

e Requires programmed or memory-mapped
I/O (relatively slow; over I/O bus)

e CPU "blindly” polls device explicitly in code
— to guarantee low latency, must poll very often
— high CPU overhead to poll very often

e For rare I/O events, CPU overhead of polling
unattractive

e Disk I/Os complete only 100s of times Per
second; in 1980s-90s, only hundreds o
network packets arrived per second

e OSes in that era eschewed polling

11

Interrupts

I/O devices have dedicated wire(s) that they can
use to signal interrupt(s) to CPU

On interrupt, if interrupt priority level (IPL) > CPU
priority level:

— CPU saves state of currently running program

— jumps to interrupt service routine (ISR) in kernel

— invokes device driver, which asks device for events

— returns to previously running program

CPU priority level: kernel-set machine state

specifying which interrupts allowed (others
postponed by CPU)

On modern x86_64, interrupt latency of ~3 us
from device interrupt to start of ISR

12

Interrupts

(Interrupts well-suited to rare I/0 events: lower B
latency than rarely polling, lower CPU cost than
constantly polling
Interrupts asynchronous—they preempt other

_System activity)

— invokes device driver, which asks device for events

— returns to previously running program

e CPU priority level: kernel-set machine state
specifying which interrupts allowed (others
postponed by CPU)

e On modern x86_64, interrupt latency of ~3 us
from device interrupt to start of ISR

13

Interrupts and Network I/0

Disk I/O requests come from OS itself;
completion interrupts inherently rate-
controlled

Network packets come from other hosts; no
“local” rate control for received packet
Interrupts

Remember: interrupts take priority over all
other system processing (over other kernel
execution, user-space applications)

What will happen when received packet rate
extremely high?
— Answer depends on detailed software structure...

14

Interrupts and Network I/0

a Receive Livelock: A
When event rate (pkt arrival rate) so high, system
spends all its time servicing interrupts, gets no
other work done! y

INterrupts

e Remember: interrupts take priority over all
other system processing (over other kernel
execution, user-space applications)

o What will happen when received packet rate

extremely high?
— Answer depends on detailed software structure...

15

Design Goals for
Network I/0 System

e Goals:
— Low latency for responding to I/O events
— Low jitter (variance in latency)
— Fairness: resources allocated evenly among tasks

— High throughput for I/O (e.g., achievable packet
receive rate, transmit rate)

o What are the tasks for a network server?
— Packet reception
— Packet transmission
— Protocol processing (often in kernel)
— Other I/O processing
— Application processing

16

Background: OS Architecture for
Interrupt-Driven Networking

e Packet arrives
e Network card interrupts at “high” IPL

e ISR looks at Ethernet header, enqueues
packet for further processing, returns

e "Low"” IPL software interrupt dequeues
packets from queue, does IP/UDP/TCP
processing, enqueues data for dst process

e Process reads data with read() system call

e Queues denote scheduling and priority
level boundaries

17

Background: OS Architecture for
Interrupt-Driven Networking

g Queues are scheduling and priority level A
boundaries
Minimizing work in ISR reduces service latency

_ for other device I/0 interrupts p

e "Low"” IPL software interrupt dequeues
packets from queue, does IP/UDP/TCP
processing, enqueues data for dst process

e Process reads data with read() system call

e Queues denote scheduling and priority
level boundaries

18

increasing priority level

Interrupt-Driven Networking,
UNIX Style

recelve ISR
C\’ [transmit complete ISR

(m T

input queue output queue

socket
IP forwarding/reception buffer
socket { | software interrupt
buffer — kernel
- I 17 " Tuser

19

Interrupt-Driven Networking,
UNIX Style

recelve ISR
C\’ [transmit complete ISR

(m T

input queue output queue

socket
buffer

IP forwarding/reception

socket software interrupt
buffer — kernel

M

Design prioritizes packet reception above all else

Original motivation: small buffers on network

. interfaces (no longer a concern))

“yeasing priority level

Interrupt-Driven Networking,
UNIX Style

recelve ISR
C\’ [transmit complete ISR

(m T

input queue output queue
socket
IP forwarding/reception buffer
socket { | software interrupt
buffer — kernel
T I L1 “user

) increasing priority level

.

How will this system be

nave as packet receive rate

iIncreases—what will ou

out packet rate do?

Receive Livelock Pathologies

e As input rate increases beyond maximum
loss-free receive rate, output rate decreases

e System wastes CPU preparing arriving
packets for queue, all of which dropped

e For input burst of packets, first packet not
delivered to user level until whole burst put
onh queue (e.g., leaves NFS server disk idle!)

e In systems where transmit lower-priority than
receive, transmit starves

22

Livelock Avoidance Technique 1:
Minimize Receive Interrupts

e Goal: limit the receive interrupt rate

e Receive ISR:

— sets flag indicating this network interface has
received one or more packets

— schedules kernel thread that polls network
interfaces for received packets

— does not re-enable receive interrupts
e That's it! Set flag, schedule kernel thread,

and return, leaving receive interrupts
disabled.

23

Livelock Avoidance Technique 2:
Kernel Polling Thread

e When scheduled, checks all network
interfaces’ “packets received” flags

e For such interfaces:

— process packet all the way through kernel
protocol stack (IP/forwarding/UDP/TCP), ending
with interface output queue or socket buffer to
application

— maximum quota on packets fproce_ssed for same
interface on one invocation for fairness

— round-robins among interfaces and between
transmit and receive

— Re-enable interface’s receive interrupts only when
no pending packets at that interface

24

Livelock Avoidance Technique 2:
Kernel Polling Thread

g Under overload, where do packets go?

Dropped by network interface card when buffering
exhausted (either in card, or in host RAM), at no

9 CPU cost!
I
with interface output queue or socket buffer to
application

— maximum quota on packets fproce_ssed for same
interface on one invocation for fairness

— round-robins among interfaces and between
transmit and receive

— Re-enable interface’s receive interrupts only when

no pending packets at that interface

25

~

Performance Evaluation:

Techniques 1 and 2

6000 | | | |
g 5000 | e mOO0nOnm Bom @ o _
E Polling (no quota) fj ?
£ 4000 H Polling (quota = 5) (j 5 5 —
g O No polling o O og % °®
£ 3000 @ Unmodified > O ®®® —
S i On @
Q L? @
2 2000 - o 0" 8o o _
& @
5 1000 — —

0 I I I I
0 2000 4000 6000 8000 10000

Input packet rate (pkts/sec)

e No screend firewall

e Without quotas for input processing, big

trouble! (Why?)

12000

26

What about screend?

Bl = i T e i wilata e A = T

3000 |
3 2500 —
E 2000 50 —
8 u'I' Polling w/feedback
% 1500 — O I%. I! [Polling, no feedback —
S =] ® Unmodified
2 1000 T . —
5 ¢ u
S sl . Om -
© EI me Y lII Mm
0 | | ® *Rel o0
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

e User-level application still cannot run under
heavy receive load!

e Technique 3: disable receive interrupts when
queue to user application fills 27

Receive Livelock: Summary

e Scheduling vital to performance of a busy
server
— may be implicit (e.qg., interrupts), not explicit
(e.g., OS scheduler)

e Understanding cross-layer behavior vital to
finding performance limitations and
designing for high performance

e General lessons:
— Don't discard data after doing work on it
— Poll while busy, interrupt while lightly loaded

28

