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Motivating Application: Google 

•  Crawl the whole web 
•  Store it all on “one big disk” 
•  Process users’ searches on “one big CPU” 
•  More storage, CPU required than one PC 

can offer 
•  Custom parallel supercomputer: expensive 

(so much so, not really available today) 
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Cluster of PCs as Supercomputer 

•  Lots of cheap PCs, each with disk and CPU 
–  High aggregate storage capacity 
–  Spread search processing across many CPUs 

•  How to share data among PCs? 
•  Ivy: shared virtual memory 

–  Fine-grained, relatively strong consistency at load/
store level 

–  Fault tolerance? 
•  NFS: share fs from one server, many clients 

–  Goal: mimic original UNIX local fs semantics 
–  Compromise: close-to-open consistency 

(performance) 
–  Fault tolerance? 
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GFS: File system for sharing data on clusters, 
designed with Google’s application workload 
specifically in mind 
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Google Platform Characteristics 

•  100s to 1000s of PCs in cluster 
•  Cheap, commodity parts in PCs 
•  Many modes of failure for each PC: 

– App bugs, OS bugs 
– Human error 
– Disk failure, memory failure, net failure, 

power supply failure 
– Connector failure 

•  Monitoring, fault tolerance, auto-recovery 
essential 
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Google File System: Design Criteria 

•  Detect, tolerate, recover from failures 
automatically 

•  Large files, >= 100 MB in size 
•  Large, streaming reads (>= 1 MB in size) 

–  Read once 
•  Large, sequential writes that append 

–  Write once 
•  Concurrent appends by multiple clients (e.g., 

producer-consumer queues) 
–  Want atomicity for appends without synchronization 

overhead among clients 
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GFS: Architecture 

•  One master server (state replicated on 
backups) 

•  Many chunk servers (100s – 1000s) 
– Spread across racks; intra-rack b/w greater 

than inter-rack 
– Chunk: 64 MB portion of file, identified by 64-

bit, globally unique ID 
•  Many clients accessing same and different 

files stored on same cluster 
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GFS: Architecture (2) 
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Master Server 

•  Holds all metadata: 
– Namespace (directory hierarchy) 
– Access control information (per-file) 
– Mapping from files to chunks 
– Current locations of chunks (chunkservers) 

•  Manages chunk leases to chunkservers 
•  Garbage collects orphaned chunks 
•  Migrates chunks between chunkservers 
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Master Server 

•  Holds all metadata: 
– Namespace (directory hierarchy) 
– Access control information (per-file) 
– Mapping from files to chunks 
– Current locations of chunks (chunkservers) 

•  Manages chunk leases to chunkservers 
•  Garbage collects orphaned chunks 
•  Migrates chunks between chunkservers 

Holds all metadata in RAM; very fast 
operations on file system metadata 
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Chunkserver 

•  Stores 64 MB file chunks on local disk 
using standard Linux filesystem, each with 
version number and checksum 

•  Read/write requests specify chunk handle 
and byte range 

•  Chunks replicated on configurable number 
of chunkservers (default: 3) 

•  No caching of file data (beyond standard 
Linux buffer cache) 
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Client 

•  Issues control (metadata) requests to 
master server 

•  Issues data requests directly to 
chunkservers 

•  Caches metadata 
•  Does no caching of data 

– No consistency difficulties among clients 
– Streaming reads (read once) and append 

writes (write once) don’t benefit much from 
caching at client 
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Client API 

•  Is GFS a filesystem in traditional sense? 
–  Implemented in kernel, under vnode layer? 
– Mimics UNIX semantics? 

•  No; a library apps can link in for storage 
access 

•  API: 
– open, delete, read, write (as expected) 
– snapshot: quickly create copy of file 
– append: at least once, possibly with gaps 

and/or inconsistencies among clients 
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Client Read 

•  Client sends master: 
–  read(file name, chunk index) 

•  Master’s reply: 
–  chunk ID, chunk version number, locations of replicas 

•  Client sends “closest” chunkserver w/replica: 
–  read(chunk ID, byte range) 
–  “Closest” determined by IP address on simple rack-

based network topology 

•  Chunkserver replies with data 
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Client Write 

•  Some chunkserver is primary for each chunk 
–  Master grants lease to primary (typically for 60 sec.) 
–  Leases renewed using periodic heartbeat messages 

between master and chunkservers 

•  Client asks master for primary and secondary 
replicas for each chunk 

•  Client sends data to replicas in daisy chain 
–  Pipelined: each replica forwards as it receives 
–  Takes advantage of full-duplex Ethernet links 
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Client Write (2) 

•  All replicas acknowledge data write to client 
•  Client sends write request to primary 
•  Primary assigns serial number to write request, 

providing ordering 
•  Primary forwards write request with same serial 

number to secondaries 
•  Secondaries all reply to primary after completing 

write 
•  Primary replies to client 
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Client Write (3) 
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Client Record Append 

•  Google uses large files as queues between 
multiple producers and consumers 

•  Same control flow as for writes, except… 
•  Client pushes data to replicas of last chunk of 

file 
•  Client sends request to primary 
•  Common case: request fits in current last chunk: 

–  Primary appends data to own replica 
–  Primary tells secondaries to do same at same byte 

offset in theirs 
–  Primary replies with success to client 
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Client Record Append (2) 

•  When data won’t fit in last chunk: 
–  Primary fills current chunk with padding 
–  Primary instructs other replicas to do same 
–  Primary replies to client, “retry on next chunk” 

•  If record append fails at any replica, client 
retries operation 
–  So replicas of same chunk may contain different data

—even duplicates of all or part of record data 
•  What guarantee does GFS provide on 

success? 
–  Data written at least once in atomic unit 
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GFS: Consistency Model 

•  Changes to namespace (i.e., metadata) are 
atomic 
–  Done by single master server! 
–  Master uses log to define global total order of 

namespace-changing operations 

•  Data changes more complicated 
•  Consistent: file region all clients see as same, 

regardless of replicas they read from 
•  Defined: after data mutation, file region that is 

consistent, and all clients see that entire 
mutation 
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GFS: Data Mutation Consistency 

•  Record append completes at least once, at 
offset of GFS’ choosing 

•  Apps must cope with Record Append 
semantics 

Write Record Append 

serial 
success 

defined  
defined 

interspersed with 
inconsistent concurrent 

successes 
consistent 

but 
undefined 

failure inconsistent 
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Applications and 
Record Append Semantics 

•  Applications should include checksums in 
records they write using Record Append 
– Reader can identify padding / record 

fragments using checksums 

•  If application cannot tolerate duplicated 
records, should include unique ID in 
record 
– Reader can use unique IDs to filter duplicates 
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Logging at Master 

•  Master has all metadata information 
– Lose it, and you’ve lost the filesystem! 

•  Master logs all client requests that modify 
metadata to disk sequentially 

•  Replicates log entries to remote backup 
servers 

•  Only replies to client after log entries safe 
on disk on self and backups! 
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Chunk Leases and Version Numbers 

•  If no outstanding lease when client 
requests write, master grants new one 

•  Chunks have version numbers 
– Stored on disk at master and chunkservers 
– Each time master grants new lease, 

increments version, informs all replicas 

•  Master can revoke leases 
– e.g., when client requests rename or snapshot 

of file 
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What If the Master Reboots? 

•  Replays log from disk 
– Recovers namespace (directory) information 
– Recovers file-to-chunk-ID mapping 

•  Asks chunkservers which chunks they hold 
– Recovers chunk-ID-to-chunkserver mapping 

•  If chunk server has older chunk, it’s stale 
– Chunk server down at lease renewal 

•  If chunk server has newer chunk, adopt its 
version number 
– Master may have failed while granting lease 
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What if Chunkserver Fails? 

•  Master notices missing heartbeats 
•  Master decrements count of replicas for all 

chunks on dead chunkserver 
•  Master re-replicates chunks missing 

replicas in background 
– Highest priority for chunks missing greatest 

number of replicas 



 
27 

File Deletion 

•  When client deletes file: 
–  Master records deletion in its log 
–  File renamed to hidden name including deletion 

timestamp 

•  Master scans file namespace in background: 
–  Removes files with such names if deleted for longer 

than 3 days (configurable) 
–  In-memory metadata erased 

•  Master scans chunk namespace in background: 
–  Removes unreferenced chunks from chunkservers 



What About Small Files? 

•  Most files stored in GFS are multi-GB; a 
few are shorter 

•  Instructive case: storing a short 
executable in GFS, executing on many 
clients simultaneously 
– 3 chunkservers storing executable 

overwhelmed by many clients’ concurrent 
requests 

– App-specific fix: replicate such files on more 
chunkservers; stagger app start times 
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Write Performance (Distinct Files) 
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Record Append Performance 
(Same File) 
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GFS: Summary 

•  Success: used actively by Google to support 
search service and other applications 
–  Availability and recoverability on cheap hardware 
–  High throughput by decoupling control and data 
–  Supports massive data sets and concurrent appends 

•  Semantics not transparent to apps 
–  Must verify file contents to avoid inconsistent regions, 

repeated appends (at-least-once semantics) 

•  Performance not good for all apps 
–  Assumes read-once, write-once workload (no client 

caching!) 


