
GFS: The Google File System

Brad Karp
UCL Computer Science

CS GZ03 / M030
24th October 2014

2

Motivating Application: Google

•  Crawl the whole web
•  Store it all on “one big disk”
•  Process users’ searches on “one big CPU”
•  More storage, CPU required than one PC

can offer
•  Custom parallel supercomputer: expensive

(so much so, not really available today)

3

Cluster of PCs as Supercomputer

•  Lots of cheap PCs, each with disk and CPU
–  High aggregate storage capacity
–  Spread search processing across many CPUs

•  How to share data among PCs?
•  Ivy: shared virtual memory

–  Fine-grained, relatively strong consistency at load/
store level

–  Fault tolerance?
•  NFS: share fs from one server, many clients

–  Goal: mimic original UNIX local fs semantics
–  Compromise: close-to-open consistency

(performance)
–  Fault tolerance?

4

Cluster of PCs as Supercomputer

•  Lots of cheap PCs, each with disk and CPU
–  High aggregate storage capacity
–  Spread search processing across many CPUs

•  How to share data among PCs?
•  Ivy: shared virtual memory

–  Fine-grained, relatively strong consistency at load/
store level

–  Fault tolerance?
•  NFS: share fs from one server, many clients

–  Goal: mimic original UNIX local fs semantics
–  Compromise: close-to-open consistency

(performance)
–  Fault tolerance?

GFS: File system for sharing data on clusters,
designed with Google’s application workload
specifically in mind

5

Google Platform Characteristics

•  100s to 1000s of PCs in cluster
•  Cheap, commodity parts in PCs
•  Many modes of failure for each PC:

– App bugs, OS bugs
– Human error
– Disk failure, memory failure, net failure,

power supply failure
– Connector failure

•  Monitoring, fault tolerance, auto-recovery
essential

6

Google File System: Design Criteria

•  Detect, tolerate, recover from failures
automatically

•  Large files, >= 100 MB in size
•  Large, streaming reads (>= 1 MB in size)

–  Read once
•  Large, sequential writes that append

–  Write once
•  Concurrent appends by multiple clients (e.g.,

producer-consumer queues)
–  Want atomicity for appends without synchronization

overhead among clients

7

GFS: Architecture

•  One master server (state replicated on
backups)

•  Many chunk servers (100s – 1000s)
– Spread across racks; intra-rack b/w greater

than inter-rack
– Chunk: 64 MB portion of file, identified by 64-

bit, globally unique ID
•  Many clients accessing same and different

files stored on same cluster

8

GFS: Architecture (2)

9

Master Server

•  Holds all metadata:
– Namespace (directory hierarchy)
– Access control information (per-file)
– Mapping from files to chunks
– Current locations of chunks (chunkservers)

•  Manages chunk leases to chunkservers
•  Garbage collects orphaned chunks
•  Migrates chunks between chunkservers

10

Master Server

•  Holds all metadata:
– Namespace (directory hierarchy)
– Access control information (per-file)
– Mapping from files to chunks
– Current locations of chunks (chunkservers)

•  Manages chunk leases to chunkservers
•  Garbage collects orphaned chunks
•  Migrates chunks between chunkservers

Holds all metadata in RAM; very fast
operations on file system metadata

11

Chunkserver

•  Stores 64 MB file chunks on local disk
using standard Linux filesystem, each with
version number and checksum

•  Read/write requests specify chunk handle
and byte range

•  Chunks replicated on configurable number
of chunkservers (default: 3)

•  No caching of file data (beyond standard
Linux buffer cache)

12

Client

•  Issues control (metadata) requests to
master server

•  Issues data requests directly to
chunkservers

•  Caches metadata
•  Does no caching of data

– No consistency difficulties among clients
– Streaming reads (read once) and append

writes (write once) don’t benefit much from
caching at client

13

Client API

•  Is GFS a filesystem in traditional sense?
–  Implemented in kernel, under vnode layer?
– Mimics UNIX semantics?

•  No; a library apps can link in for storage
access

•  API:
– open, delete, read, write (as expected)
– snapshot: quickly create copy of file
– append: at least once, possibly with gaps

and/or inconsistencies among clients

14

Client Read

•  Client sends master:
–  read(file name, chunk index)

•  Master’s reply:
–  chunk ID, chunk version number, locations of replicas

•  Client sends “closest” chunkserver w/replica:
–  read(chunk ID, byte range)
–  “Closest” determined by IP address on simple rack-

based network topology

•  Chunkserver replies with data

15

Client Write

•  Some chunkserver is primary for each chunk
–  Master grants lease to primary (typically for 60 sec.)
–  Leases renewed using periodic heartbeat messages

between master and chunkservers

•  Client asks master for primary and secondary
replicas for each chunk

•  Client sends data to replicas in daisy chain
–  Pipelined: each replica forwards as it receives
–  Takes advantage of full-duplex Ethernet links

16

Client Write (2)

•  All replicas acknowledge data write to client
•  Client sends write request to primary
•  Primary assigns serial number to write request,

providing ordering
•  Primary forwards write request with same serial

number to secondaries
•  Secondaries all reply to primary after completing

write
•  Primary replies to client

17

Client Write (3)

18

Client Record Append

•  Google uses large files as queues between
multiple producers and consumers

•  Same control flow as for writes, except…
•  Client pushes data to replicas of last chunk of

file
•  Client sends request to primary
•  Common case: request fits in current last chunk:

–  Primary appends data to own replica
–  Primary tells secondaries to do same at same byte

offset in theirs
–  Primary replies with success to client

19

Client Record Append (2)

•  When data won’t fit in last chunk:
–  Primary fills current chunk with padding
–  Primary instructs other replicas to do same
–  Primary replies to client, “retry on next chunk”

•  If record append fails at any replica, client
retries operation
–  So replicas of same chunk may contain different data

—even duplicates of all or part of record data
•  What guarantee does GFS provide on

success?
–  Data written at least once in atomic unit

20

GFS: Consistency Model

•  Changes to namespace (i.e., metadata) are
atomic
–  Done by single master server!
–  Master uses log to define global total order of

namespace-changing operations

•  Data changes more complicated
•  Consistent: file region all clients see as same,

regardless of replicas they read from
•  Defined: after data mutation, file region that is

consistent, and all clients see that entire
mutation

21

GFS: Data Mutation Consistency

•  Record append completes at least once, at
offset of GFS’ choosing

•  Apps must cope with Record Append
semantics

Write Record Append

serial
success

defined
defined

interspersed with
inconsistent concurrent

successes
consistent

but
undefined

failure inconsistent

22

Applications and
Record Append Semantics

•  Applications should include checksums in
records they write using Record Append
– Reader can identify padding / record

fragments using checksums

•  If application cannot tolerate duplicated
records, should include unique ID in
record
– Reader can use unique IDs to filter duplicates

23

Logging at Master

•  Master has all metadata information
– Lose it, and you’ve lost the filesystem!

•  Master logs all client requests that modify
metadata to disk sequentially

•  Replicates log entries to remote backup
servers

•  Only replies to client after log entries safe
on disk on self and backups!

24

Chunk Leases and Version Numbers

•  If no outstanding lease when client
requests write, master grants new one

•  Chunks have version numbers
– Stored on disk at master and chunkservers
– Each time master grants new lease,

increments version, informs all replicas

•  Master can revoke leases
– e.g., when client requests rename or snapshot

of file

25

What If the Master Reboots?

•  Replays log from disk
– Recovers namespace (directory) information
– Recovers file-to-chunk-ID mapping

•  Asks chunkservers which chunks they hold
– Recovers chunk-ID-to-chunkserver mapping

•  If chunk server has older chunk, it’s stale
– Chunk server down at lease renewal

•  If chunk server has newer chunk, adopt its
version number
– Master may have failed while granting lease

26

What if Chunkserver Fails?

•  Master notices missing heartbeats
•  Master decrements count of replicas for all

chunks on dead chunkserver
•  Master re-replicates chunks missing

replicas in background
– Highest priority for chunks missing greatest

number of replicas

27

File Deletion

•  When client deletes file:
–  Master records deletion in its log
–  File renamed to hidden name including deletion

timestamp

•  Master scans file namespace in background:
–  Removes files with such names if deleted for longer

than 3 days (configurable)
–  In-memory metadata erased

•  Master scans chunk namespace in background:
–  Removes unreferenced chunks from chunkservers

What About Small Files?

•  Most files stored in GFS are multi-GB; a
few are shorter

•  Instructive case: storing a short
executable in GFS, executing on many
clients simultaneously
– 3 chunkservers storing executable

overwhelmed by many clients’ concurrent
requests

– App-specific fix: replicate such files on more
chunkservers; stagger app start times

28

Write Performance (Distinct Files)

29

Record Append Performance
(Same File)

30

31

GFS: Summary

•  Success: used actively by Google to support
search service and other applications
–  Availability and recoverability on cheap hardware
–  High throughput by decoupling control and data
–  Supports massive data sets and concurrent appends

•  Semantics not transparent to apps
–  Must verify file contents to avoid inconsistent regions,

repeated appends (at-least-once semantics)

•  Performance not good for all apps
–  Assumes read-once, write-once workload (no client

caching!)

