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Context: Availability vs. Consistency 

•  NFS, Ivy, 2PC all had single points of 
failure; not available under failures 

•  Paxos allows view-change to elect 
primary, thus state machine replication 
– Strong consistency model: all operations in 

same order at all replicas, always appearance 
of single system-wide order for all operations 

– Strong reachability requirement: majority of 
nodes must be reachable by leader 

•  If reachability weaker, can we provide any 
consistency when we replicate? 
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Bayou: 
Calendar Application Case Study 

•  Today’s lecture: 
– Bayou’s office calendar application as case 

study in ordering and conflicts in a distributed 
system with poor connectivity 

•  Each calendar entry: room, time, and set 
of participants 

•  Want everyone to see same set of entries 
(eventually) 
– else, users may double-book room, avoid 

using unoccupied room, &c. 
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Traditional Calendar Application: 
One Central Server 

•  Ordering of users’ requests: only one 
copy, server picks order 

•  Conflict resolution: server checks for 
conflicts (i.e., “is this room already booked 
during this period?”) before accepting 
updates 
– Returns error to user if conflict; user decides 

what to do 
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What’s Wrong with Central Server? 

•  Want my calendar on my iPhone 
–  i.e., each user wants database replicated on 

his PDA or laptop 
– No master copy 

•  iPhone has only intermittent connectivity 
– 3G expensive when roaming, WiFi not 

everywhere; no connectivity on many flights 
– Bluetooth useful for direct contact with other 

calendar users’ PDAs, but very short range 
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Simple Proposal: Swap Complete DBs 

•  Suppose two users in Bluetooth range 
•  Each sends entire calendar DB to other, as 

with “classic” Palm or iPhone sync 
•  Possibly lots of network bandwidth 
•  What if conflict, i.e., two concurrent 

meetings? 
–  iPhone sync just keeps both meetings! 
– Want to do better: automatic conflict 

resolution 
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Automatic Conflict Resolution 

•  Can’t just view DB items as bits—too little 
information to resolve conflicts! 
–  “Both files have changed” can falsely conclude entire 

DBs conflict 
–  “Distinct record in each DB changed” can falsely 

conclude no conflict 

•  Want to build intelligent DB app that knows how 
to resolve conflicts 
–  More like users’ updates: read DB, think, change 

request to eliminate conflict 
–  Must ensure all nodes resolve conflicts in same way to 

keep replicas consistent 
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Insight: Ordering of Updates 

•  Maintain ordered list of updates at each 
node 

•  Make sure every node holds same updates 
•  Make sure every node applies updates in 

same order 
•  Make sure updates are deterministic 

function of DB contents 
•  If we obey above, “sync” really just a 

simple merge of two ordered lists! 
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What’s in a Write? 

•  Each node’s ordered list of writes: write 
log 

•  Suppose calendar update takes form: 
– “10 AM meeting, Room 6.12, Mark and Brad” 
– Sufficient for our goal? 

•  Better: “1-hour meeting, Room 6.12, Mark 
and Brad, at 9, else 10, else 11” 
– Also include unique ID: <local-time-stamp, 

originating-node-ID> 
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What’s in a Write? 

•  Each node’s ordered list of writes: write 
log 

•  Suppose calendar update takes form: 
– “10 AM meeting, Room 6.12, Mark and Brad” 
– Sufficient for our goal? 

•  Better: “1-hour meeting, Room 6.12, Mark 
and Brad, at 9, else 10, else 11” 
– Also include unique ID: <local-time-stamp, 

originating-node-ID> 

Instructions for write more than data to write 
Write log really an “instruction” for calendar 
program 
Want all nodes to execute same instructions in 
same order, eventually 
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Write Log Example 

•  <701, A>: Node A asks for meeting M1 to 
occur at 10 AM, else 11 AM 

•  <770, B>: Node B asks for meeting M2 to 
occur at 10 AM, else 11 AM 

•  Let’s agree to sort by write ID (e.g., <701, 
A> 

•  As “writes” spread from node to node, 
nodes may initially apply updates in 
different orders 
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Write Log Example (2) 

•  Each newly seen write merged into log 
•  Log replayed 

– May cause calendar displayed to user to 
change! 

–  i.e., all entries really “tentative,” nothing 
stable 

•  After everyone has seen all writes, 
everyone will agree (contain same state) 
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Global Time Synchronization 
Impossible 

•  Does this mean that globally ordering 
writes by local timestamps impossible? 

•  No—timestamps just allow agreement on 
order 
– Nodes may have wrong clocks 
– OK, so long as users don’t expect writes to 

reach calendar in real-time order made 
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Timestamps for Write Ordering: 
Limitations 

•  Ordering by write ID arbitrarily constrains 
order 
– Never know if some write from past hasn’t yet 

reached your node 
– So all entries in log must be tentative 

forever 
– And you must store entire log forever 

•  Problem: how can we allow committing a 
tentative entry? 
– So we can have meetings and trim logs 
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Criteria for Committing Writes 

•  For log entry X to be committed, everyone 
must agree on: 
– Total order of all previous committed entries 
– Fact that X is next in total order 
– Fact that all uncommitted entries are “after” X 



 
16 

How Bayou Agrees on Total Order 
of Committed Writes 

•  One node designated “primary replica” 
•  Primary marks each write it receives with 

permanent CSN (commit sequence number) 
–  That write is committed 
–  Complete timestamp is <CSN, local-TS, node-id> 

•  Nodes exchange CSNs 
•  CSNs define total order for committed writes 

–  All nodes eventually agree on total order 
–  Uncommitted writes come after all committed writes 
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Showing Users that Writes 
Have Committed 

•  Still not safe to show users that an 
appointment request has committed 

•  Entire log up to newly committed entry 
must be committed 
– else there might be earlier committed write a 

node doesn’t know about! 
– …and upon learning about it, would have to 

re-run conflict resolution 
•  Result: committed write not stable unless 

node has seen all prior committed writes 
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Showing Users that Writes 
Have Committed 

•  Still not safe to show users that an 
appointment request has committed 

•  Entire log up to newly committed entry 
must be committed 
– else there might be earlier committed write a 

node doesn’t know about! 
– …and upon learning about it, would have to 

re-run conflict resolution 
•  Result: committed write not stable unless 

node has seen all prior committed writes 

Bayou propagates writes between nodes to enforce 
this invariant 
i.e., Bayou propagates writes in order 
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Committed vs. Tentative Writes 

•  Can now show user if a write has 
committed 
– When node has seen every CSN up to that 

point, as guaranteed by propagation protocol 
•  Slow or disconnected node cannot prevent 

commits! 
– Primary replica allocates CSNs; global order of 

writes may not reflect real-time write times 
•  What about tentative writes, though—how 

do they behave, as seen by users? 
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Tentative Writes 

•  Two nodes may disagree on meaning of 
tentative (uncommitted) writes 
– Even if those two nodes have synced 

with each other! 
– Only CSNs from primary replica can resolve 

these disagreements permanently 
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Example: Disagreement on 
Tentative Writes 

A B C time 

logs 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 

time 

logs 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 

time 

logs 

<0, C> 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 

time 

logs 

<0, C> 

W <1, B> 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 

time 

logs 

<1, B> <0, C> 

W <1, B> 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

<1, B> <0, C> 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

<2, A> <1, B> <0, C> 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

<2, A> <1, B> <0, C> 

sync (3) 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

sync (3) 

<1, B> 
<2, A> 

<1, B> 
<2, A> 

<0, C> 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

sync (3) 

<1, B> 
<2, A> 

<1, B> 
<2, A> 

<0, C> 

sync (4) 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

sync (3) 

<1, B> 
<2, A> 

<0, C> 
<1, B> 
<2, A> 

<0, C> 
<1, B> 
<2, A> 

sync (4) 
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Example: Disagreement on 
Tentative Writes 

A B C 

W <0, C> 
W <1, B> 

W <2, A> 

time 

logs 

sync (3) 

<1, B> 
<2, A> 

<0, C> 
<1, B> 
<2, A> 

<0, C> 
<1, B> 
<2, A> 

sync (4) 
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Trimming the Log 

•  When nodes receive new CSNs, can 
discard all committed log entries seen up 
to that point 
– Update protocol guarantees CSNs received in 

order 
•  Instead, keep copy of whole database as 

of highest CSN 
– By definition, official committed database 
– Everyone does (or will) agree on contents 
– Entries never need go through conflict 

resolution 
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Trimming the Log 

•  When nodes receive new CSNs, can 
discard all committed log entries seen up 
to that point 
– Update protocol guarantees CSNs received in 

order 
•  Instead, keep copy of whole database as 

of highest CSN 
– By definition, official committed database 
– Everyone does (or will) agree on contents 
– Entries never need go through conflict 

resolution 
 

Result: no need to keep years of log data! 
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Ordering of Commits by 
Primary Replica 

•  Can primary commit writes in any order it 
pleases? 
–  Suppose user creates appointment, then decides to 

delete it, or change attendee list 
–  What order must these ops take in CSN order? 

•  Create first, then delete or modify 
•  Must be true in every node’s view of tentative log entries, 

too! 

•  Total order of writes must preserve order of 
writes made at each node 
–  Not necessarily order among different nodes’ writes 
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How Does Primary Replica Commit 
Each Node’s Writes in Order? 

•  Nodes don’t quite use real-time clocks for 
timestamps—use Lamport logical clocks 
– Anytime see message with later timestamp 

than current time, set clock to after that 
timestamp 

•  All nodes send updates in order 
•  So primary receives updates in per-node 

causal order, and commits them in that 
order 



 
37 

Syncing with Trimmed Logs  

•  Suppose nodes discard all writes in log 
with CSNs 
– Just keep copy of “stable” DB, reflecting 

discarded entries 

•  Cannot receive writes that conflict with DB 
– Only could be if write has CSN less than a 

discarded CSN 
– Already saw all writes with lower CSNs in right 

order—if see them again, can discard! 
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Syncing with Trimmed Logs (2) 

•  To propagate to node X 
•  If node X’s highest CSN less than mine: 

– Send X full stable DB 
– X uses that DB as starting point 
– X can discard all his CSN log entries 
– X can play his tentative writes into that DB 

•  If node X’s highest CSN greater than 
mine: 
– X can ignore my DB! 
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Bayou: Summary 

•  Seems more useful than old Palm’s calendar! 
–  Often disconnected when making appointments 
–  Automatic conflict resolution convenient 

•  Not at all transparent to applications! 
–  Very strange programming practices 
–  Writes are code, not just bits! 
–  Check for conflicts, resolve conflicts 

•  Doesn’t work for all apps 
–  Bank account may be OK 
–  But hard to imagine for source code repository! 


