
Bayou: Replication with
Weak Inter-Node Connectivity

Brad Karp
UCL Computer Science

CS GZ03 / M030
22nd October 2014

2

Context: Availability vs. Consistency

•  NFS, Ivy, 2PC all had single points of
failure; not available under failures

•  Paxos allows view-change to elect
primary, thus state machine replication
– Strong consistency model: all operations in

same order at all replicas, always appearance
of single system-wide order for all operations

– Strong reachability requirement: majority of
nodes must be reachable by leader

•  If reachability weaker, can we provide any
consistency when we replicate?

3

Bayou:
Calendar Application Case Study

•  Today’s lecture:
– Bayou’s office calendar application as case

study in ordering and conflicts in a distributed
system with poor connectivity

•  Each calendar entry: room, time, and set
of participants

•  Want everyone to see same set of entries
(eventually)
– else, users may double-book room, avoid

using unoccupied room, &c.

4

Traditional Calendar Application:
One Central Server

•  Ordering of users’ requests: only one
copy, server picks order

•  Conflict resolution: server checks for
conflicts (i.e., “is this room already booked
during this period?”) before accepting
updates
– Returns error to user if conflict; user decides

what to do

5

What’s Wrong with Central Server?

•  Want my calendar on my iPhone
–  i.e., each user wants database replicated on

his PDA or laptop
– No master copy

•  iPhone has only intermittent connectivity
– 3G expensive when roaming, WiFi not

everywhere; no connectivity on many flights
– Bluetooth useful for direct contact with other

calendar users’ PDAs, but very short range

6

Simple Proposal: Swap Complete DBs

•  Suppose two users in Bluetooth range
•  Each sends entire calendar DB to other, as

with “classic” Palm or iPhone sync
•  Possibly lots of network bandwidth
•  What if conflict, i.e., two concurrent

meetings?
–  iPhone sync just keeps both meetings!
– Want to do better: automatic conflict

resolution

7

Automatic Conflict Resolution

•  Can’t just view DB items as bits—too little
information to resolve conflicts!
–  “Both files have changed” can falsely conclude entire

DBs conflict
–  “Distinct record in each DB changed” can falsely

conclude no conflict

•  Want to build intelligent DB app that knows how
to resolve conflicts
–  More like users’ updates: read DB, think, change

request to eliminate conflict
–  Must ensure all nodes resolve conflicts in same way to

keep replicas consistent

8

Insight: Ordering of Updates

•  Maintain ordered list of updates at each
node

•  Make sure every node holds same updates
•  Make sure every node applies updates in

same order
•  Make sure updates are deterministic

function of DB contents
•  If we obey above, “sync” really just a

simple merge of two ordered lists!

9

What’s in a Write?

•  Each node’s ordered list of writes: write
log

•  Suppose calendar update takes form:
– “10 AM meeting, Room 6.12, Mark and Brad”
– Sufficient for our goal?

•  Better: “1-hour meeting, Room 6.12, Mark
and Brad, at 9, else 10, else 11”
– Also include unique ID: <local-time-stamp,

originating-node-ID>

10

What’s in a Write?

•  Each node’s ordered list of writes: write
log

•  Suppose calendar update takes form:
– “10 AM meeting, Room 6.12, Mark and Brad”
– Sufficient for our goal?

•  Better: “1-hour meeting, Room 6.12, Mark
and Brad, at 9, else 10, else 11”
– Also include unique ID: <local-time-stamp,

originating-node-ID>

Instructions for write more than data to write
Write log really an “instruction” for calendar
program
Want all nodes to execute same instructions in
same order, eventually

11

Write Log Example

•  <701, A>: Node A asks for meeting M1 to
occur at 10 AM, else 11 AM

•  <770, B>: Node B asks for meeting M2 to
occur at 10 AM, else 11 AM

•  Let’s agree to sort by write ID (e.g., <701,
A>

•  As “writes” spread from node to node,
nodes may initially apply updates in
different orders

12

Write Log Example (2)

•  Each newly seen write merged into log
•  Log replayed

– May cause calendar displayed to user to
change!

–  i.e., all entries really “tentative,” nothing
stable

•  After everyone has seen all writes,
everyone will agree (contain same state)

13

Global Time Synchronization
Impossible

•  Does this mean that globally ordering
writes by local timestamps impossible?

•  No—timestamps just allow agreement on
order
– Nodes may have wrong clocks
– OK, so long as users don’t expect writes to

reach calendar in real-time order made

14

Timestamps for Write Ordering:
Limitations

•  Ordering by write ID arbitrarily constrains
order
– Never know if some write from past hasn’t yet

reached your node
– So all entries in log must be tentative

forever
– And you must store entire log forever

•  Problem: how can we allow committing a
tentative entry?
– So we can have meetings and trim logs

15

Criteria for Committing Writes

•  For log entry X to be committed, everyone
must agree on:
– Total order of all previous committed entries
– Fact that X is next in total order
– Fact that all uncommitted entries are “after” X

16

How Bayou Agrees on Total Order
of Committed Writes

•  One node designated “primary replica”
•  Primary marks each write it receives with

permanent CSN (commit sequence number)
–  That write is committed
–  Complete timestamp is <CSN, local-TS, node-id>

•  Nodes exchange CSNs
•  CSNs define total order for committed writes

–  All nodes eventually agree on total order
–  Uncommitted writes come after all committed writes

17

Showing Users that Writes
Have Committed

•  Still not safe to show users that an
appointment request has committed

•  Entire log up to newly committed entry
must be committed
– else there might be earlier committed write a

node doesn’t know about!
– …and upon learning about it, would have to

re-run conflict resolution
•  Result: committed write not stable unless

node has seen all prior committed writes

18

Showing Users that Writes
Have Committed

•  Still not safe to show users that an
appointment request has committed

•  Entire log up to newly committed entry
must be committed
– else there might be earlier committed write a

node doesn’t know about!
– …and upon learning about it, would have to

re-run conflict resolution
•  Result: committed write not stable unless

node has seen all prior committed writes

Bayou propagates writes between nodes to enforce
this invariant
i.e., Bayou propagates writes in order

19

Committed vs. Tentative Writes

•  Can now show user if a write has
committed
– When node has seen every CSN up to that

point, as guaranteed by propagation protocol
•  Slow or disconnected node cannot prevent

commits!
– Primary replica allocates CSNs; global order of

writes may not reflect real-time write times
•  What about tentative writes, though—how

do they behave, as seen by users?

20

Tentative Writes

•  Two nodes may disagree on meaning of
tentative (uncommitted) writes
– Even if those two nodes have synced

with each other!
– Only CSNs from primary replica can resolve

these disagreements permanently

21

Example: Disagreement on
Tentative Writes

A B C time

logs

22

Example: Disagreement on
Tentative Writes

A B C

W <0, C>

time

logs

23

Example: Disagreement on
Tentative Writes

A B C

W <0, C>

time

logs

<0, C>

24

Example: Disagreement on
Tentative Writes

A B C

W <0, C>

time

logs

<0, C>

W <1, B>

25

Example: Disagreement on
Tentative Writes

A B C

W <0, C>

time

logs

<1, B> <0, C>

W <1, B>

26

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

<1, B> <0, C>

27

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

<2, A> <1, B> <0, C>

28

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

<2, A> <1, B> <0, C>

sync (3)

29

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

sync (3)

<1, B>
<2, A>

<1, B>
<2, A>

<0, C>

30

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

sync (3)

<1, B>
<2, A>

<1, B>
<2, A>

<0, C>

sync (4)

31

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

sync (3)

<1, B>
<2, A>

<0, C>
<1, B>
<2, A>

<0, C>
<1, B>
<2, A>

sync (4)

32

Example: Disagreement on
Tentative Writes

A B C

W <0, C>
W <1, B>

W <2, A>

time

logs

sync (3)

<1, B>
<2, A>

<0, C>
<1, B>
<2, A>

<0, C>
<1, B>
<2, A>

sync (4)

33

Trimming the Log

•  When nodes receive new CSNs, can
discard all committed log entries seen up
to that point
– Update protocol guarantees CSNs received in

order
•  Instead, keep copy of whole database as

of highest CSN
– By definition, official committed database
– Everyone does (or will) agree on contents
– Entries never need go through conflict

resolution

34

Trimming the Log

•  When nodes receive new CSNs, can
discard all committed log entries seen up
to that point
– Update protocol guarantees CSNs received in

order
•  Instead, keep copy of whole database as

of highest CSN
– By definition, official committed database
– Everyone does (or will) agree on contents
– Entries never need go through conflict

resolution

Result: no need to keep years of log data!

35

Ordering of Commits by
Primary Replica

•  Can primary commit writes in any order it
pleases?
–  Suppose user creates appointment, then decides to

delete it, or change attendee list
–  What order must these ops take in CSN order?

•  Create first, then delete or modify
•  Must be true in every node’s view of tentative log entries,

too!

•  Total order of writes must preserve order of
writes made at each node
–  Not necessarily order among different nodes’ writes

36

How Does Primary Replica Commit
Each Node’s Writes in Order?

•  Nodes don’t quite use real-time clocks for
timestamps—use Lamport logical clocks
– Anytime see message with later timestamp

than current time, set clock to after that
timestamp

•  All nodes send updates in order
•  So primary receives updates in per-node

causal order, and commits them in that
order

37

Syncing with Trimmed Logs

•  Suppose nodes discard all writes in log
with CSNs
– Just keep copy of “stable” DB, reflecting

discarded entries

•  Cannot receive writes that conflict with DB
– Only could be if write has CSN less than a

discarded CSN
– Already saw all writes with lower CSNs in right

order—if see them again, can discard!

38

Syncing with Trimmed Logs (2)

•  To propagate to node X
•  If node X’s highest CSN less than mine:

– Send X full stable DB
– X uses that DB as starting point
– X can discard all his CSN log entries
– X can play his tentative writes into that DB

•  If node X’s highest CSN greater than
mine:
– X can ignore my DB!

39

Bayou: Summary

•  Seems more useful than old Palm’s calendar!
–  Often disconnected when making appointments
–  Automatic conflict resolution convenient

•  Not at all transparent to applications!
–  Very strange programming practices
–  Writes are code, not just bits!
–  Check for conflicts, resolve conflicts

•  Doesn’t work for all apps
–  Bank account may be OK
–  But hard to imagine for source code repository!

