Paxos: Agreement for Replicated
State Machines

Brad Karp
UCL Computer Science

A
I

CS Gz03 / M030
20t October 2014



Review: Types of Distributedness

e NFS: distributed to share data across
clients through filesystem interface

e ITvy: distributed to provide illusion of
seamless shared memory across clients

e 2PC: distributed because different nodes
have different functions (e.g., Bank A,
Bank B)

e \What about distributedness to make
system more available?



Centralization: Single Points of Failure

e Consider what happens when nodes fail:

— NFS server?
— Bank A?

— CPU that owns a page in Ivy?

e In all these systems, there is single node
with “authoritative” copy of some data

e Single point of failure: kill one node,
clients may grind to halt

e How can we do better?



Replication

e Replicate data on several servers

o If server(s) fail, hopefully others still
running; data still available, clients can still
make progress

e Consistency?

— Informally speaking, all replicas should hold
identical copies of data

— S0 as users’ requests modify data, must
somehow keep all data identical on all replicas

4



2PC vs. Replication

o 2PC works well if different nodes play different
roles (e.qg., Bank A, Bank B)

o 2PC isn’t perfect
— Must wait for all sites and TC to be up
— Must know if each site voted yes or no
— TC must be up to decide
— Doesn't tolerate faults well; must wait for repair

e Can clients make progress when some nodes
unreachable?
— Yes! When data replicated.



State Machine Replication

e Any server essentially a state machine
— Disk, RAM, CPU registers are state
— Instructions transition among states

— User requests cause instructions to be
executed, so cause transitions among states

e Replicate state machine on multiple hosts

— Every replica must see same operations in
same order

— If deterministic, replicas end in same state



Ensuring All Replicas See
Operations in Same Order

III

e Nominate one "“special” server: primary

o Call all other servers backups

e Clients send all operations to current
primary

e Primary’s role:

— Chooses order for clients’ operations
— Sends clients’ operations to backups
— Replies to clients



Ensuring All Replicas See
Operations in Same Order

g Didn’t we say the whole point was availability, and h
fault-tolerance?
What if primary fails?

g P Y ,

primary
e Primary’s role:

— Chooses order for clients’ operations
— Sends clients’ operations to backups
— Replies to clients



Primary Failure

Last operation received by primary may not be
complete

Need to pick new primary
Can't allow two simultaneous primaries! (Why?)

Define: lowest-numbered live server is primary
— After failure, everyone pings everyone
— Does everyone now know who new primary is?

Maybe not:

— Pings may be lost: two primaries

— Pings may be delayed: two primaries
— Network partition: two primaries



Idea: Majority Consensus

e Require a majority of nodes to agree on
primary

e At most one network partition can contain
majority

e If pings lost, and thus two potential
primaries, majorities must overlap

— Node(s) in overlap can see both potential
primaries, raise alarm about non-agreement!

10



Technique: View Change Algorithm

e Entire system goes through sequence of
Views

e View: {view #, set of participant nodes}

e View change algorithm must ensure
agreement on unique successor for each
view

e Participant set within view allows all nodes
to agree on primary
— Same rule: lowest-numbered ID in set is

primary

11



Technique: View Change Algorithm

If two nodes agree on view, they will agree
on primary

e View: {view #, set of participant nodes}

e View change algorithm must ensure
agreement on unique successor for each
view

e Participant set within view allows all nodes
to agree on primary
— Same rule: lowest-numbered ID in set is

primary

12



View Change Requires
Fault-Tolerant Agreement

e Envision view as opaque value

e Want all nodes to agree on same value
(i.e., same view)

e At most one value may be chosen

e Want to agree despite lost messages and
crashed nodes

e Can't guarantee to agree!

— Can guarantee not to agree on different
values!

—i.e., guarantee safety, but not liveness

13



Paxos:
Fault-Tolerant Agreement Protocol

e Protocol eventually succeeds provided
— Majority of participants reachable

— Participants know how to generate value to
agree on

e j.e., Paxos doesn’t determine the value nodes try
to agree on—value is an opaque input to Paxos

e Only widely used algorithm for fault-
tolerant agreement in state machine
replication

14



Review: State Machine Replication,
Primary-Backup, Paxos

How did we get here?
Want to replicate a system for availability

View system as state machine; replicate the
state machine

Ensure all replicas see same ops in same order
Primary orders requests, forwards to replicas
All nodes must agree on primary

All nodes must agree on view
— Participant with lowest address in view is primary

Paxos guaranteed to complete only when all
nodes agree on input (in this case, input is view)



Overview of Paxos

One (or more) nodes decide to be leader

Leader chooses proposed value to agree on

— (In our case, value is view: {view #, participant set})
Leader contacts Paxos participants, tries to
assemble majority

— Participants can be fixed set of nodes (configured)

— Or can be all nodes in old view (including unreachable
nodes)

If @ majority respond, successful agreement

16



Agreement is Hard!

e What if two nodes decide to be leader?

o What if network partition leads to two
leaders?

e What if leader crashes after persuading
only some nodes?

e What if leader got majority, then failed,
without announcing result?

— Or announced result to only a few nodes?

— New leader might choose different
value, despite previous agreement

17



Paxos: Structure

e Three phases in algorithm

e May need to restart if nodes fail or
timeouts waiting for replies

e State in each node running Paxos, per-
value (view):
— n,: greatest n accepted by node (init: -1)
— Vv, value received together with n, (init: nil)
—n,,: greatest n seen in Q1 message (init: -1)

— done: leader says agreement reached; can
use new value (i.e., start new view) (init: 0)

18



Paxos: Phase 1

A node (maybe more than one) decides to be
leader, then it

picks proposal number, n

must be unique, good if higher than any
known proposal number

use last known proposal number + 1,
append node’s own ID

sends Q1(n) message to all nodes (including

self)

if node receives Q1(n) and n > n,
nh =N
send reply R1(n,, v,) message

19



Paxos: Phase 2

if leader receives R1 messages from majority of
nodes (including self)

if any R1(n, v) contained a value (v)
v = value sent with highest n
else leader gets to choose a value (v)
v = {old view# + 1, set of pingable nodes}
send Q2(n, v) message to all responders
if node receives Q2(n, v) and n >= n,
n,=n,=n
V, =V
send reply R2() message

20



Paxos: Phase 3

if leader receives R2() messages from
majority of protocol participants
send Q3() message to all participants

if node receives Q3()
done = true
agreement reached; agreed-on value is v,
(primary is lowest-numbered node in

participant list within v,)

21



Paxos: Timeouts

e All nodes wait a maximum period
(timeout) for messages they expect

e Upon timeout, a node declares itself a
leader and initiates a new Phase 1 of
algorithm

22



Paxos with One Leader, No Failures:

Phase 1
0 1 2 3 4
n, -1 -1 -1 -1 -1
vV, nil nil nil nil nil
n, -1 -1 -1 -1 -1

23



Paxos with One Leader, No Failures:

Phase 1
n=11
0 1 2 3 4
n, -1 -1 -1 -1 -1
vV, nil nil nil nil nil
L -1 -1 -1 -1 -1

24



Paxos with One Leader, No Failures:

Phase 1
“Q1(11)”
n=11
0 1 2 3 4
n, -1 -1 -1 -1 -1
vV, nil nil nil nil nil
L -1 -1 -1 -1 -1

25



Paxos with One Leader, No Failures:

Phase 1
—
“Q1(11)”
n= 19
0 1 2 3 4
n, -1 -1 -1 -1 -1
vV, nil nil nil nil nil
n, -1 -1 -1 -1 -1

26



Paxos with One Leader, No Failures:

Phase 1
0 1 2 3 4
n, -1 -1 -1 -1 -1
vV, nil nil nil nil nil
n, 11 11 11 11 11

27



Paxos with One Leader, No Failures:

Phase 1
Z2
/\“RI(-L@
0 1 2 3 4
n, -1 -1 -1 -1 -1
vV, nil nil nil nil nil
n, 11 11 11 11 11

done F F F F F

28



Phase 2
R1 from
majority!
all v's nil
1 2
-1 -1
nil nil
11 11
F F

Paxos with One Leader, No Failures:

11

nil

11

29



Paxos with One Leader, No Failures:

Phase 2
0 1 2 3 4
n, -1 -1 -1 -1 -1
A nil {1, {0, ..., 4}} nil nil nil
n, 11 11 11 11 11

done F F F F F

30



Paxos with One Leader, No Failures:

Phase 2
"Q2(11,
{1, {0, ..., 4}})"
0 1 2 3 4
n, -1 -1 -1 -1 -1
A nil {1, {0, ..., 4}} nil nil nil
n, 11 11 11 11 11

done F F F F F

31



Paxos with One Leader, No Failures:

Phase 2
S
"Q2(11,

{1, {0, ..., 43})"
0 1 2 3 4
n, -1 -1 -1 -1 -1
A nil {1, {0, ..., 4}} nil nil nil
n, 11 11 11 11 11

done F F F F F

32



Paxos with One Leader, No Failures:

Phase 2
0 1 2 3 4
n, 11 11 11 11 11

v, {1,{0,..,43> {1,{0,..,4}r {4{0,..,4}} {1,{0,..,4}r {1,{0,..,4}}

n, 11 11 11 11 11

done F F F F F

33



Paxos with One Leader, No Failures:
Phase 2

w7
0 1 2 3 4

n, 11 11 11 11 11

v, {1,{0,..,43> {1,{0,..,4}r {4{0,..,4}} {1,{0,..,4}r {1,{0,..,4}}

n, 11 11 11 11 11

done F F F F F



Paxos with One Leader, No Failures:

Phase 3
R2 from
majority!
0 1 2 3 4
n, 11 11 11 11 11

v, {1,{0,..,43> {1,{0,..,4}r {4{0,..,4}} {1,{0,..,4}r {1,{0,..,4}}

n, 11 11 11 11 11

done F F F F F

35



Paxos with One Leader, No Failures:

Phase 3
[\“QBQ \ \
1 2 3 4
n, 11 11 11 11 11

v, {1,{0,..,43> {1,{0,..,4}r {4{0,..,4}} {1,{0,..,4}r {1,{0,..,4}}

n, 11 11 11 11 11

done F F F F F



Paxos with One Leader, No Failures:

Phase 3
0 1 2 3 4
n, 11 11 11 11 11

v, {1,{0,..,43> {1,{0,..,4}r {4{0,..,4}} {1,{0,..,4}r {1,{0,..,4}}

n, 11 11 11 11 11

done T T T T T

37



Paxos with One Leader, No Failures:
Phase 3

All nodes agree on view {1,{0, ..., 4}}
New primary: lowest ID, so node 0

0 1 2 3 4

n, 11 11 11 11 11

v, {1,{0,..,43> {1,{0,..,4}r {4{0,..,4}} {1,{0,..,4}r {1,{0,..,4}}

n, 11 11 11 11 11

done T T T T T

38



Paxos: Number of Leaders

e Clearly, when no failures, no message
losses, and one leader, Paxos reaches
agreement

e How can one ensure that with high
probability, only one leader?

— Every node must be willing to become leader
in case of failures

— Every node should delay random period after
realizing pingable nodes have changed, or
delay own ID x some constant

39



Paxos: Ensuring Agreement

 When would non-agreement occur?
— When nodes with different v, receive Q3

e Safety goal:

— If Q3 could have been sent, future Q3s
guaranteed to reach nodes with same v,

40



Risk: More Than One Leader

e Can occur after timeout during Paxos
algorithm, partition, lost packets

e Two leaders must use different n in their
Q1()s, by construction of n

e Suppose two leaders proposed n = 10 and
n=11

41



More Than One Leader (2)

e Case 1: proposer of 10 didnt receive R2()s
from majority of participants

— Proposer never will receive R2()s from

majority, as no node will send R2() in reply to
Q2(10,...) after seeing Q1(11)

— Or proposer of 10 may be in network partition
with minority of nodes

42



More than One Leader (3)

e Case 2: proposer of 10 (10) did receive R2()s
from majority of participants
— Thus, 10’s originator may have sent Q3()!
— But 10’s majority must have seen 10’s Q2() before

11’s Q1()

e Otherwise, would have ignored 10’s Q2, and no majority
could have resulted

— Thus, 11 must receive R1 from at least one node that
saw 10's Q2
— Thus, 11 must be aware of 10’s value

— Thus, 11 would have used 10’s value, rather than
creating onel!

43



More than One Leader (3)

Result: agreement on 10’s proposed value!

TFOM Majority Or participants

— Thus, 10’s originator may have sent Q3()!
— But 10’s majority must have seen 10’s Q2() before

11’s Q1()

e Otherwise, would have ignored 10’s Q2, and no majority
could have resulted

— Thus, 11 must receive R1 from at least one node that
saw 10's Q2
— Thus, 11 must be aware of 10’s value

— Thus, 11 would have used 10’s value, rather than
creating onel!

44



Risk: Leader Fails
Before Sending Q2()s

e Some node will time out and become a
leader

e Old leader didn't send any Q3()s, so no
risk of non-agreement caused by old
leader

e Good, but not required, that new leader
chooses higher n for proposal

— Otherwise, timeout, some other leader will try

— Eventually, will find leader who knew old n
and will use higher n

45



Risks: Leader Failures

e Suppose leader fails after sending minority

of Q2()s

— Same as two leaders!
e Suppose leader fails after sending majority

of Q2()s
—i.e., potentially after reaching agreement!
— Also same as two leaders!

46



Risk: Node Fails After Receiving Q2(),
and After Sending R2()

o If node doesn't restart, possible timeout in
Phase 3, new leader

e If node does restart, it must remember v,
and n, on disk!

— Leader might have failed after sending a few
Q3()s
— New leader must choose same value

— This failed node may be only node in
intersection of two majorities!

47



Paxos: Summary

e Original goal: replicated state machines!

— Want to continue, even if some nodes not
reachable

e After each failure, perform view change
using Paxos agreement

e i.e., agree on exactly which nodes in new
view
e Thus, everyone can agree on new primary

e No discussion here of how to render data
consistent across replicas!

48



