
Background: Operating Systems 

Brad Karp 
UCL Computer Science 

CS GZ03 / M030 
29th September 2014 



 
2 

Outline 

•  Goals of an operating system 
•  Sketch of UNIX 

– User processes, kernel 
– Process-kernel communication 
– Waiting for I/O 

•  Simple web server design 



 
3 

Why Discuss OS Now? 

•  Real distributed systems run on an OS 
•  OS details affect design, robustness, 

performance 
–  Sometimes because of OS idiosyncrasies 
–  More often because OS already solves some hard 

problems 
•  Ask questions if something isn’t clear! 
•  Further reading: 

–  General overview: 
Tanenbaum, Modern Operating Systems, 3rd Edition 

–  Details of a modern UNIX: 
McKusick et al., The Design and Implementation of the 4.4 

BSD Operating System 



 
4 

Goals of OS Designers 

•  Share hardware resources 
–  e.g., one CPU, many applications running 

•  Protection (app-to-app, app-to-OS) 
–  Bug in one app shouldn’t crash whole box or bring 

down other app 
•  Communication (app-to-app, app-to-OS) 
•  Hardware independence 

–  Don’t want to rewrite apps for each new CPU, each 
new I/O device 

•  How? Using abstractions and well-defined 
interfaces 



 
5 

UNIX Abstractions 

•  Process 
– Address space 
– Thread of control 
– User ID 

•  Filesystem 
•  File Descriptor 

– File on disk 
– Pipe between processes 
– Network connection 
– Hardware device 



 
6 

OS Virtualizes Hardware 

•  Kernel implements abstractions, executes 
with privilege to directly touch hardware 

•  OS multiplexes CPU, memory, disk, 
network among multiple processes (apps) 

•  Apps can share resources 
•  Apps can control resources 
•  Apps see simple interface 



 
7 

OS Abstraction Design 

•  OS abstractions interact 
–  If can start program, must be able to read 

executable file 

•  Processes see system call interface to 
kernel abstractions 
– Looks like function call, but special 
– e.g., fork(), exec() 
– e.g., open(), read(), creat() 



 
8 

Typical UNIX System 

•  App1 and App2 
in separate 
address spaces; 
protected from 
one another 

•  Hardware runs 
kernel with 
elevated privilege 

Kernel 

User Space 

Filesystem 

Disk Driver 

Hardware 

App1 App2 

libs 
libs 

0 0 

N 
M 



 
9 

Typical UNIX System 

•  App1 and App2 
in separate 
address spaces; 
protected from 
one another 

•  Hardware runs 
kernel with 
elevated privilege 

Kernel 

User Space 

Filesystem 

Disk Driver 

Hardware 

App1 App2 

libs 
libs 

0 0 

N 
M 

How do processes and kernel communicate? 
How do processes and kernel wait for events 
(e.g., disk and network I/O)? 



 
10 

System Calls: 
Process-Kernel Communication 

•  Application closes a file: 
close(3); 

•  C library: 
close(x) { 

R0 <- 73 
R1 <- x 
TRAP 
RET 

} 



 
11 

System Calls: Traps 

•  TRAP instruction: 
XP <- PC 
switch to kernel address space 
set privileged flag 
PC <- address of kernel trap handler 
 

•  Kernel trap handler: 
save regs to this process’ “process control block” (PCB) 
set SP to kernel stack 
call sys_close(), ordinary C function 
…now executing in “kernel half” of process… 
restore registers from PCB 
TRAPRET 



 
12 

System Calls: TRAPRET 

•  TRAPRET instruction: 
PC <- XP 
clear privileged flag 
switch to process address space 
continue execution 



 
13 

System Call Properties 

•  Protected transfer 
– Process granted kernel privilege level by 

hardware 
– But jump must be to known kernel entry point 

•  Process suspended until system call 
finishes 

•  What if system call must wait (e.g., read() 
from disk)? 



 
14 

Blocking I/O 

•  On a busy server, system calls often must wait 
for I/O; e.g., 

•  sys_open(path) 
for each pathname component 

start read of directory from disk 
sleep waiting for disk read 
process directory contents 
 

•  sleep() 
save kernel regs to PCB1 (including SP) 
find runnable PCB2 
restore PCB2 kernel registers (SP, &c.) 
return 



 
15 

Blocking I/O 

•  On a busy server, system calls often must wait 
for I/O; e.g., 

•  sys_open(path) 
for each pathname component 

start read of directory from disk 
sleep waiting for disk read 
process directory contents 
 

•  sleep() 
save kernel regs to PCB1 (including SP) 
find runnable PCB2 
restore PCB2 kernel registers (SP, &c.) 
return 

Each user process has kernel stack 
 contains state of pending system call 

System call ”blocks” while awaiting I/O 



 
16 

Disk I/O Completion 

•  How does process continue after disk I/O 
completes? 

•  Disk controller generates interrupt 
•  Device interrupt routine in kernel finds 

process blocked on that I/O 
•  Marks process as runnable 
•  Returns from interrupt 
•  Process scheduler will reschedule waiting 

process 



 
17 

How Do Servers Use Syscalls? 

•  Consider server_1() web server (in 
handout) 

time 

time 

time 
application CPU 

disk syscalls 

network syscalls 

R 

R W W 

R 

C 



 
18 

How Do Servers Use Syscalls? 

•  Consider server_1() web server (in 
handout) 

time 

time 

time 
application CPU 

disk syscalls 

network syscalls 

Server waits for each resource in turn 
Each resource largely idle 
What if there are many clients? 

R 

R W W 

R 

C 



 
19 

Performance and Concurrency 

•  Under heavy load, server_1(): 
– Leaves resources idle 
– …and has a lot of work to do! 

•  Why? 
– Software poorly structured! 
– What would a better structure look like? 



 
20 

Solution: I/O Concurrency 

•  Can we overlap I/O with other useful 
work? Yes: 
– Web server: if files in disk cache, I/O wait 

spent mostly blocked on write to network 
– Networked file system client: could compile 

first part of file while fetching second part 
•  Performance benefits potentially huge 

– Say one client causes disk I/O, 10 ms 
–  If other clients’ requests in cache, could serve 

100 other clients during that time! 



 
21 

Solution: I/O Concurrency 

•  Can we overlap I/O with other useful 
work? Yes: 
– Web server: if files in disk cache, I/O wait 

spent mostly blocked on write to network 
– Networked file system client: could compile 

first part of file while fetching second part 
•  Performance benefits potentially huge 

– Say one client causes disk I/O, 10 ms 
–  If other clients’ requests in cache, could serve 

100 other clients during that time! 

Next: how to achieve I/O concurrency! 


