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Motivation: Vulnerabilities in C 

•  Seen dangers of vulnerabilities: 
–  injection of arbitrary code 
–  return-to-libc (no code injection; malicious 

invocation of existing code) 
•  Vulnerabilities are bugs—application behavior 

not intended by programmer 
•  Bugs in C often because memory operations 

not safe 
– many ways to overwrite stored pointer, cause it 

to point to arbitrary memory 
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Can we constrain behavior of application 
code to prevent bugs from corrupting 
memory, and thus allowing exploits? 



Motivation: 
Untrusted Extensions 

•  Users often wish to extend application with 
new functionality made available as a binary 
module, e.g., 
–  Flash player plugin for Firefox browser 
–  Binary kernel module for new filesystem for Linux 

•  Key risk: code from untrusted source (e.g., 
web site), but will run in your application’s 
address space 
– What if code overwrites your app’s data? 
– Or calls functions in your app’s code with ill 

intent? (e.g., calls disable_certificate_check()) 
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N.B. extension code may be malicious or may 
merely be buggy 



Risks of Running Untrusted Code 

•  Overwrites trusted data or code 
•  Reads private data from trusted code’s 

memory 
•  Executes privileged instruction 
•  Calls trusted functions with bad arguments 
•  Jumps to middle of trusted function 
•  Contains vulnerabilities allowing others to 

do above 
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Allowed Operations for Untrusted 
Code 

•  Reads/writes own memory 
•  Executes own code 
•  Calls explicitly allowed functions in trusted 

code at correct entry points 
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Straw Man Solution: 
Isolation with Processes 

•  Run original app code in one process, 
untrusted extension in another; communicate 
between them by RPC 
–  (Recall NFS over RPC, but between distinct hosts) 

•  Memory protection means extension cannot 
read/write memory of original app 

•  Not very transparent for programmer, if app 
and extension closely coupled 

•  Performance hit: context switches between 
processes 
–  trap to kernel, copy arguments, save and restore 

registers, flush processor’s TLB 
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Can we do better? 



Today’s Topic: 
Software-Based Fault Isolation 

•  Run untrusted binary extension in same 
process (address space) as trusted app code 

•  Place extension’s code and data in sandbox: 
–  Prevent extension’s code from writing to app’s 

memory outside sandbox 
–  Prevent extension’s code from transferring control 

to app’s code outside sandbox 

•  Idea: add instructions before memory writes 
and jumps to inspect their targets and 
constrain their behavior 
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SFI Use Scenario 

•  Developer runs sandboxer on unsafe 
extension code, to produce safe, sandboxed 
version: 
–  adds instructions that sandbox unsafe instructions 
–  transformation done by compiler or by binary 

rewriter 
•  Before running untrusted binary code, user 

runs verifier on it: 
–  checks that safe instructions don’t access memory 

outside extension code’s data 
–  checks that sandboxing instructions in place 

before all unsafe instructions  
11 
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User need not trust sandboxer; only verifier 



SFI Unit of Isolation: Fault Domain 

•  SFI confines untrusted code within a fault 
domain, in same address space (process) as 
trusted code 

•  Fault domain consists of: 
– Unique ID (used for access control on syscalls) 
–  Code segment: virtual address range with same 

unique high-order bits, used to hold code 
– Data segment: virtual address range with same 

unique high-order bits, used to hold data 
•  Segment ID: unique high-order bits for a 

segment 
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Fault Domain Example 

•  Segment IDs are 
12 bits long in 
example 

•  Separate segments 
for code and data 
allow distinguishing 
addresses as falling 
in one or other 
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Code 
Segment 

Data 
Segment 

0x10000000 

0x100fffff 

0x10100000 

0x101fffff 

virtual address 

stack, heap, 
static data 

fault 
domain 

0x10200000 app memory 



Sandboxing Memory 

•  Untrusted code should only be able to: 
–  jump within its fault domain’s code segment 
– write within its fault domain’s data segment 

•  Sandboxer must ensure all jump, call, and 
memory store instructions comply with above 

•  Two types of memory addresses in 
instructions: 
–  direct: complete address is specified statically in 

instruction 
–  indirect: address is computed from register’s 

value 
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Sandboxing Memory (2) 

•  For directly addressed memory 
instructions, sandboxer should only emit: 
– directly addressed jumps and calls whose 

targets fall in fault domain’s code segment 
• e.g., JUMP 0x10030000 

– directly addressed stores whose targets fall in 
fault domain’s data segment 
• e.g., STORE 0x10120000, R1 

•  Directly addressed jumps, calls, stores can 
be made safe statically  
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Sandboxing Indirectly Addressed 
Memory 

•  Indirectly addressed jumps, calls, stores 
harder to sandbox—full address depends 
on register whose value not known 
statically 
– e.g., STORE R0, R1 
– e.g., JR R3 

•  These are unsafe instructions that must be 
made safe at runtime 
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Sandboxing Indirectly Addressed 
Memory (2) 

•  Suppose unsafe instruction is 
STORE R0, R1  ; write R1 to Mem[R0] 

•  Sandboxer rewrites code to: 
MOV Ra, R0  ; copy R0 into Ra 
SHR Rb, Ra, Rc ; Rb = Ra >> Rc, to get segment ID 
CMP Rb, Rd  ; Rd holds correct data segment ID 
BNE fault  ; wrong data segment ID 
STORE Ra, R1  ; Ra in data segment, so do write 

•  Ra, Rc, and Rd are dedicated—may not be 
used by extension code 
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Sandboxing Indirectly Accessed 
Memory (3) 

•  Why does rewritten code use 
STORE Ra, R1 

•  and not 
STORE R0, R1 

•  After all, R0 has passed the check! 
•  Extension code may jump directly to 

STORE, bypassing check instructions! 
•  Because Ra, Rc, Rd are dedicated, Ra will 

always contain safe address inside data 
segment 
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Remember: extension code may not set 
dedicated registers! 



Sandboxing Indirectly Accessed 
Memory (4) 

•  Costs of first sandboxing scheme for 
indirectly addressed memory: 
–  adds 4 instructions before each indirect store 
–  uses 6 registers, 5 of which must be dedicated 

(never available to extension) 
•  example used 3 dedicated registers, but need 2 more 

for sandboxing unsafe code addresses 

•  Can we do better, and get away with fewer 
added instructions? 

•  Yes, if we give up being able to identify 
which instruction accessed outside sandbox!  
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Faster Sandboxing of Indirect 
Addresses 

•  Idea: don’t check if target address is in 
segment; force it to be in segment 

•  So we transform STORE R0, R1 into: 
AND Ra, R0, Re ; clear segment ID bits in Ra 
OR Ra, Ra, Rf  ; set segment ID to correct value 
STORE Ra, R1   ; do write to safe target address 

•  Now segment ID bits in Ra will always be 
correct; can write anywhere in segment, but 
not outside it 

•  Cost: 2 added instructions, 5 dedicated 
registers 
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Faster Sandboxing of Indirect 
Jumps and Calls 

•  Very similar to data address sandboxing 
•  Transform JR R0 as follows: 

AND Rg, R0, Re ; clear segment ID bits in Rg 
OR Rg, Rg, Rh  ; set segment ID to correct value 
JR Rg        ; do jump to safe target address 

•  N.B. use of separate dedicated registers 
Rg for code target address, Rh for code 
segment ID 

•  Return from function similar, too (to 
sandbox return address)  
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Optimization: Guard Zones 

•  Some instructions use “register+offset” 
addressing: they use register as base, and 
supply offset for CPU to add to it 

•  To sandbox such an instruction, SFI would 
need to do additional ADD to compute base
+offset 

•  Clever insight: offsets are of limited size, 
because of instruction encoding (+/- 64K on 
MIPS) 

•  So if base in correct segment, offset could 
stray no more than 64K outside that segment  
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Guard Zones (2) 

•  Surround each 
segment with 64K 
guard zone of 
unmapped pages 

•  Ignore offsets 
when sandboxing! 

•  Accesses to guard 
zones cause traps 

•  Saves one ADD for 
reg+offset instrs 
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Code 
Segment 

Data 
Segment 

0x10000000 

0x100fffff 

0x10200000 

0x102fffff 

virtual address 

0x10310000 app memory 

guard zone 
0x0fff0000 

guard zone 0x1010ffff 

guard zone 

guard zone 

0x101f0000 

0x1030ffff 



Optimization: Stack Pointer 

•  Insight: stack pointer is read far more 
often than it’s written; used as base 
address for many reg+offset instructions 

•  SFI doesn’t sandbox uses of stack pointer 
as base address; instead sandboxes 
setting of stack pointer, so stack pointer 
always contains safe value 

•  Reduces number of instructions that pay 
sandboxing overhead 

 
26 



Verifier 

•  Upon receiving (supposedly) sandboxed 
binary, verifier must ensure all instructions 
safe 

•  For instructions that use direct addressing, 
easy to check statically that segment IDs 
in addresses are correct 

•  For those that use indirect addressing, 
verifier must ensure instruction preceded 
by full set of sandboxing instructions 
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Verifier (2) 

•  Verifier must ensure no privileged 
instructions in code 

•  Verifier must ensure PC-relative branches 
fall in code segment 

•  If sandboxed code fails any of these 
checks, verifier rejects it 

•  Otherwise, code is correctly sandboxed 
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SFI Limitations on x86 

•  MIPS instructions fixed-length; x86 
instructions variable-length 
– Result: can jump into middle of x86 instruction! 
–  e.g., binary for AND eax, 0x80CD is 

25 CD 80 00 00 
–  If adversary jumps to second byte, he executes 

the instruction CD 80, which traps to a system 
call on Linux! 

–  Jump to mid-instruction on x86 may even 
jump out of fault domain into app code! 

•  x86 has very few registers (4 general-
purpose ones), so cannot dedicate registers 
easily  
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SFI vs. Exploits 

•  Simple stack-smashing, injecting code in 
stack buffer? 
– can’t execute own injected code—can’t jump 

to data segment 
•  Return-to-libc? 

– can overwrite return address with one within 
fault domain’s code segment—so can do 
return-to-libc within extension 

•  Format string vulnerabilities? 
– same story as above 
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SFI vs. Exploits: Lessons 

•  SFI allows write (including buffer overrun, 
%n overwrite) to extension’s data 

•  SFI allows jumps anywhere in extension’s 
code segment 

•  …so attacker can exploit extension’s 
execution 

•  …and on x86, can probably cause jump 
out of fault domain 
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To be fair, SFI wasn’t designed for x86, and 
wasn’t designed to prevent exploits, but 
rather to isolate untrusted extension from 
main application. 



SFI Summary 

•  Confines writes and control transfers in 
extension’s data and code segments, 
respectively 

•  Can support direct calls to allowed 
functions in trusted (app) code 

•  Prevents execution of privileged 
instructions 

•  Any write or control transfer within 
extension’s memory is allowed 

•  Requires dedicated registers 
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CFI: Control-Flow Integrity 

•  Follow-on to SFI; works on x86 
•  Idea: examine control flow graph (CFG) of 

program, which includes all functions and all 
transfers of control between them (e.g., calls 
of named functions, returns from them) 

•  Doesn’t require dedicated registers like SFI 
•  Finds all instruction boundaries 
•  Adds instructions to enforce that all jumps, 

branches, calls, returns transfer control to 
valid target found in CFG 
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CFI (2) 

•  Prevents return to injected code by 
overwriting return address: 
–  transition to return address of injected code 

not in CFG 
•  Prevents return-to-libc attack: 

– enforces that return instruction in function f() 
can only transfer control to next instruction in 
some function that calls f() 

•  Further reading (not examinable): Abadi et 
al., Control-Flow Integrity, CCS 2005 
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