Sandboxing Untrusted Code:
Software-Based Fault Isolation
(SFI)

Brad Karp
UCL Computer Science

A
I

CS GzZ03 / M030
8th December 2014

Motivation: Vulnerabilities in C

e Seen dangers of vulnerabilities:
— injection of arbitrary code
— return-to-libc (no code injection; malicious
invocation of existing code)

e Vulnerabilities are bugs—application behavior
not intended by programmer

e Bugs in C often because memory operations
not safe

— many ways to overwrite stored pointer, cause it
to point to arbitrary memory

Motivation: Vulnerabilities in C

e Seen dangers of vulnerabilities:
— injection of arbitrary code

llf\'l-l BB RPN "-f\ I:kﬁ /lﬂl\ AI\AI\ :lﬂ':f\ﬁ'l-:l\lﬂl Mﬂl:ﬂ:f\l W -]

Can we constrain behavior of application
code to prevent bugs from corrupting
memory, and thus allowing exploits?

e Bugs in C often because memory operations
not safe

— many ways to overwrite stored pointer, cause it
to point to arbitrary memory

Motivation:
Untrusted Extensions

e Users often wish to extend application with
new functionality made available as a binary
module, e.q.,

— Flash player plugin for Firefox browser
— Binary kernel module for new filesystem for Linux

o Key risk: code from untrusted source (e.g.,
web site), but will run in your application’s
address space
— What if code overwrites your app’s data?

— Or calls functions in your app’s code with ill
intent? (e.q., calls disable_certificate_check())

Motivation:
Untrusted Extensions

e Users often wish to extend application with
new functionality made available as a binary
module, e.q.,

— Flash player plugin for Firefox browser

N.B. extension code may be malicious or may
merely be buggy

web site), but will run in your application’s
address space

— What if code overwrites your app’s data?

— Or calls functions in your app’s code with ill
intent? (e.q., calls disable_certificate_check()) s

Risks of Running Untrusted Code

e Qverwrites trusted data or code

e Reads private data from trusted code’s
memory

e Executes privileged instruction
e Calls trusted functions with bad arguments
e Jumps to middle of trusted function

e Contains vulnerabilities allowing others to
do above

Allowed Operations for Untrusted
Code

e Reads/writes own memory
e Executes own code

e Calls explicitly allowed functions in trusted
code at correct entry points

Straw Man Solution:
Isolation with Processes

e Run original app code in one process,
untrusted extension in another; communicate
between them by RPC

— (Recall NFS over RPC, but between distinct hosts)

e Memory protection means extension cannot
read/write memory of original app

e Not very transparent for programmer, if app
and extension closely coupled

e Performance hit: context switches between
processes

— trap to kernel, copy arguments, save and restore
registers, flush processor’s TLB

Straw Man Solution:
Isolation with Processes

e Run original app code in one process,
untrusted extension in another; communicate
between them by RPC

— (Recall NFS over RPC, but between distinct hosts)
e Memorv nrotection means extension cannot
Can we do better?

e NOC Very transparent Tor programmer, 1T app
and extension closely coupled

e Performance hit: context switches between
processes

— trap to kernel, copy arguments, save and restore
registers, flush processor’s TLB

Today’s Topic:
Software-Based Fault Isolation

e Run untrusted binary extension in same
brocess (address space) as trusted app code

e Place extension’s code and data in sandbox:

— Prevent extension’s code from writing to app’s
memory outside sandbox

— Prevent extension’s code from transferring control
to app’s code outside sandbox
e Idea: add instructions before memory writes
and jumps to inspect their targets and
constrain their behavior

10

SFI Use Scenario

e Developer runs sandboxer on unsafe
extension code, to produce safe, sandboxed
version:

— adds instructions that sandbox unsafe instructions
— transformation done by compiler or by binary
rewriter

e Before running untrusted binary code, user
runs verifier on it:

— checks that safe instructions don’t access memory
outside extension code’s data

— checks that sandboxing instructions in place
before all unsafe instructions »

SFI Use Scenario

e Developer runs sandboxer on unsafe
extension code, to produce safe, sandboxed
version:

— adds |nstruct|ons that sandbox unsafe mstructlons

User need not trust sandboxer, only ver|f|er

e Before running untrusted binary code, user
runs verifier on it:

— checks that safe instructions don’t access memory
outside extension code’s data

— checks that sandboxing instructions in place
before all unsafe instructions

12

SFI Unit of Isolation: Fault Domain

e SFI confines untrusted code within a fault
domain, in same address space (process) as
trusted code

e Fault domain consists of:
— Unique ID (used for access control on syscalls)

— Code segment: virtual address range with same
unique high-order bits, used to hold code

— Data segment: virtual address range with same
unique high-order bits, used to hold data

e Segment ID: unique high-order bits for a
segment

13

Fault Domain Example

virtual address
0x10000000

Ox100fffff
0x10100000

stack, heap,
static data

Ox101fffff

Code
Segment

Data
Segment

__ fault
domain

—

0x10200000

v

app memory

e Segment IDs are
12 bits long in
example

e Separate segments
for code and data
allow distinguishing
addresses as falling
in one or other

14

Sandboxing Memory

e Untrusted code should only be able to:
— jump within its fault domain’s code segment
— write within its fault domain’s data segment

e Sandboxer must ensure all jump, call, and
memory store instructions comply with above

e Two types of memory addresses in
instructions:

— direct: complete address is specified statically in
instruction

— indirect: address is computed from register’s
value

15

Sandboxing Memory (2)

e For directly addressed memory
instructions, sandboxer should only emit:
— directly addressed jumps and calls whose

targets fall in fault domain’s code segment
e e.g., JUMP 0x10030000

— directly addressed stores whose targets fall in
fault domain’s data segment

e e.g., STORE 0x10120000, R1

e Directly addressed jumps, calls, stores can
be made safe statically

16

Sandboxing Indirectly Addressed
Memory

e Indirectly addressed jumps, calls, stores
harder to sandbox—full address depends
on register whose value not known

statically
—e.g., STORE RO, Rl
—e.g., JR R3
e These are unsafe instructions that must be
made safe at runtime

17

Sandboxing Indirectly Addressed
Memory (2)

e Suppose unsafe instruction is

STORE RO, Rl ; wreite R1 to Mem[RO]

e Sandboxer rewrites code to:
MOV Ra, RO ; copy RO into Ra
SHR Rb, Ra, Rc ; Rb = Ra >> Rc, to get segment ID
CMP Rb, Rd ; Rd holds correct data segment ID
BNE fault ; wrong data segment ID
STORE Ra, Rl ; Ra in data segment, so do write

e Ra, Rc, and Rd are dedicated—may not be
used by extension code

18

Sandboxing Indirectly Accessed
Memory (3)

e Why does rewritten code use

STORE Ra, Rl

e and not

STORE RO, R1

o After all, RO has passed the check!

e Extension code may jump directly to
STORE, bypassing check instructions!

e Because Ra, Rc, Rd are dedicated, Ra will
always contain safe address inside data
segment

19

Sandboxing Indirectly Accessed
Memory (3)

e Why does rewritten code use

STORE Ra, Rl

e and not

Remember: extension code may not set
dedicated registers!

e Extension code may jump directly to
STORE, bypassing check instructions!

e Because Ra, Rc, Rd are dedicated, Ra will
always contain safe address inside data
segment

20

Sandboxing Indirectly Accessed
Memory (4)

e Costs of first sandboxing scheme for
indirectly addressed memory:

— adds 4 instructions before each indirect store

— uses 6 registers, 5 of which must be dedicated
(never available to extension)

o example used 3 dedicated registers, but need 2 more
for sandboxing unsafe code addresses

e Can we do better, and get away with fewer
added instructions?

e Yes, if we give up being able to identify
which instruction accessed outside sandbox! .,

Faster Sandboxing of Indirect
Addresses

e Idea: don't check if target address is in
segment; force it to be in segment

e SO we transform store ro, r1 IiNtO:

AND Ra, RO, Re ; clear segment ID bits in Ra
OR Ra, Ra, Rf ; set segment ID to correct value
STORE Ra, Rl ; do write to safe target address

e Now segment ID bits in Ra will always be
correct; can write anywhere in segment, but
not outside it

e Cost: 2 added instructions, 5 dedicated
registers

22

Faster Sandboxing of Indirect
Jumps and Calls

e Very similar to data address sandboxing
e Transform sr ro as follows:

AND Rg, RO, Re ; clear segment ID bits in Rg
OR Rg, Rg, Rh ; set segment ID to correct value
JR Rg ; do jump to safe target address

e N.B. use of separate dedicated registers
Rg for code target address, Rh for code
segment ID

e Return from function similar, too (to
sandbox return address)

23

Optimization: Guard Zones

e Some instructions use “register+offset”
addressing: they use register as base, and
supply offset for CPU to add to it

e To sandbox such an instruction, SFI would
need to do additional ADD to compute base
+offset

e Clever insight: offsets are of limited size,

because of instruction encoding (+/- 64K on
MIPS)

e So if base in correct segment, offset could
stray no more than 64K outside that segment

24

virtual address

0x0£££0000

0x10000000

Ox100fffff
Ox1010ffff
0x101£0000

0x10200000

Ox102fffff
Ox1030ffff

Guard Zones (2)

guard zone

Code
Segment

guard zone

guard zone

Data
Segment

guard zone

e Surround each
segment with 64K
guard zone of
unmapped pages

e Ignore offsets
when sandboxing!

e Accesses to guard
zones cause traps

e Saves one ADD for

0x10310000

v

app memory

reg+offset instrs

25

Optimization: Stack Pointer

e Insight: stack pointer is read far more
often than it's written; used as base
address for many reg+offset instructions

e SFI doesn’t sandbox uses of stack pointer
as base address; instead sandboxes
setting of stack pointer, so stack pointer
always contains safe value

e Reduces number of instructions that pay
sandboxing overhead

26

Verifier

e Upon receiving (supposedly) sandboxed
binary, verifier must ensure all instructions

safe
e For instructions that use direct addressing,

easy to check statically that segment IDs
in addresses are correct

e For those that use indirect addressing,
verifier must ensure instruction preceded
by full set of sandboxing instructions

27

Verifier (2)

e Verifier must ensure no privileged
instructions in code

e Verifier must ensure PC-relative branches
fall in code segment

o If sandboxed code fails any of these
checks, verifier rejects it

e Otherwise, code is correctly sandboxed

28

SFI Limitations on x86

e MIPS instructions fixed-length; x86
instructions variable-length
— Result: can jump into middle of x86 instruction!
— e.g., binary for AND eax, 0x80CD is
25 CD 80 00 00

— If adversary jumps to second byte, he executes
the instruction CD 80, which traps to a system
call on Linux!

— Jump to mid-instruction on x86 may even
jump out of fault domain into app code!

e x86 has very few registers (4 general-
purpose ones), so cannot dedicate registers

easily

29

SFI vs. Exploits

e Simple stack-smashing, injecting code in
stack buffer?

— can’t execute own injected code—can't jump
to data segment

e Return-to-libc?

— can overwrite return address with one within
fault domain’s code segment—so can do
return-to-libc within extension

e Format string vulnerabilities?
— same story as above

30

SFI vs. Exploits: Lessons

e SFI allows write (including buffer overrun,
%n overwrite) to extension’s data

e SFI allows jumps anywhere in extension’s
code segment

e ...SO attacker can exploit extension’s
execution

e ...and on x86, can probably cause jump
out of fault domain

31

SFI vs. Exploits: Lessons

e SFI allows write (including buffer overrun
%n overwrite) to extension’s data

To be fair, SFI wasn’t designed for x86, and
wasn’t desighed to prevent exploits, but

rather to isolate untrusted extension from
main application.

WAL GULUTUVIL]

e ...and on x86, can probably cause jump
out of fault domain

/4

32

SFI Summary

e Confines writes and control transfers in
extension’s data and code segments,
respectively

e Can support direct calls to allowed
functions in trusted (app) code

e Prevents execution of privileged
instructions

e Any write or control transfer within
extension’s memory is allowed

e Requires dedicated registers

33

CFI: Control-Flow Integrity

e Follow-on to SFI; works on x86

e Idea: examine control flow graph (CFG) of
program, which includes all functions and all
transfers of control between them (e.q., calls
of named functions, returns from them)

e Doesn'’t require dedicated registers like SFI
e Finds all instruction boundaries

e Adds instructions to enforce that all jumps,
branches, calls, returns transfer control to

valid target found in CFG

34

CFI (2)

e Prevents return to injected code by
overwriting return address:

— transition to return address of injected code
not in CFG

e Prevents return-to-libc attack:

— enforces that return instruction in function f()
can only transfer control to next instruction in
some function that calls f()

e Further reading (not examinable): Abadi et
al., Control-Flow Integrity, CCS 2005

35

