
Sandboxing Untrusted Code:
Software-Based Fault Isolation

(SFI)

Brad Karp
UCL Computer Science

CS GZ03 / M030
8th December 2014

Motivation: Vulnerabilities in C

•  Seen dangers of vulnerabilities:
–  injection of arbitrary code
–  return-to-libc (no code injection; malicious

invocation of existing code)
•  Vulnerabilities are bugs—application behavior

not intended by programmer
•  Bugs in C often because memory operations

not safe
– many ways to overwrite stored pointer, cause it

to point to arbitrary memory

2

Motivation: Vulnerabilities in C

•  Seen dangers of vulnerabilities:
–  injection of arbitrary code
–  return-to-libc (no code injection; malicious

invocation of existing code)
•  Vulnerabilities are bugs—application behavior

not intended by programmer
•  Bugs in C often because memory operations

not safe
– many ways to overwrite stored pointer, cause it

to point to arbitrary memory

3

Can we constrain behavior of application
code to prevent bugs from corrupting
memory, and thus allowing exploits?

Motivation:
Untrusted Extensions

•  Users often wish to extend application with
new functionality made available as a binary
module, e.g.,
–  Flash player plugin for Firefox browser
–  Binary kernel module for new filesystem for Linux

•  Key risk: code from untrusted source (e.g.,
web site), but will run in your application’s
address space
– What if code overwrites your app’s data?
– Or calls functions in your app’s code with ill

intent? (e.g., calls disable_certificate_check())

4

Motivation:
Untrusted Extensions

•  Users often wish to extend application with
new functionality made available as a binary
module, e.g.,
–  Flash player plugin for Firefox browser
–  Binary kernel module for new filesystem for Linux

•  Key risk: code from untrusted source (e.g.,
web site), but will run in your application’s
address space
– What if code overwrites your app’s data?
– Or calls functions in your app’s code with ill

intent? (e.g., calls disable_certificate_check())

5

N.B. extension code may be malicious or may
merely be buggy

Risks of Running Untrusted Code

•  Overwrites trusted data or code
•  Reads private data from trusted code’s

memory
•  Executes privileged instruction
•  Calls trusted functions with bad arguments
•  Jumps to middle of trusted function
•  Contains vulnerabilities allowing others to

do above

6

Allowed Operations for Untrusted
Code

•  Reads/writes own memory
•  Executes own code
•  Calls explicitly allowed functions in trusted

code at correct entry points

7

Straw Man Solution:
Isolation with Processes

•  Run original app code in one process,
untrusted extension in another; communicate
between them by RPC
–  (Recall NFS over RPC, but between distinct hosts)

•  Memory protection means extension cannot
read/write memory of original app

•  Not very transparent for programmer, if app
and extension closely coupled

•  Performance hit: context switches between
processes
–  trap to kernel, copy arguments, save and restore

registers, flush processor’s TLB

8

Straw Man Solution:
Isolation with Processes

•  Run original app code in one process,
untrusted extension in another; communicate
between them by RPC
–  (Recall NFS over RPC, but between distinct hosts)

•  Memory protection means extension cannot
read/write memory of original app

•  Not very transparent for programmer, if app
and extension closely coupled

•  Performance hit: context switches between
processes
–  trap to kernel, copy arguments, save and restore

registers, flush processor’s TLB

9

Can we do better?

Today’s Topic:
Software-Based Fault Isolation

•  Run untrusted binary extension in same
process (address space) as trusted app code

•  Place extension’s code and data in sandbox:
–  Prevent extension’s code from writing to app’s

memory outside sandbox
–  Prevent extension’s code from transferring control

to app’s code outside sandbox

•  Idea: add instructions before memory writes
and jumps to inspect their targets and
constrain their behavior

10

SFI Use Scenario

•  Developer runs sandboxer on unsafe
extension code, to produce safe, sandboxed
version:
–  adds instructions that sandbox unsafe instructions
–  transformation done by compiler or by binary

rewriter
•  Before running untrusted binary code, user

runs verifier on it:
–  checks that safe instructions don’t access memory

outside extension code’s data
–  checks that sandboxing instructions in place

before all unsafe instructions
11

SFI Use Scenario

•  Developer runs sandboxer on unsafe
extension code, to produce safe, sandboxed
version:
–  adds instructions that sandbox unsafe instructions
–  transformation done by compiler or by binary

rewriter
•  Before running untrusted binary code, user

runs verifier on it:
–  checks that safe instructions don’t access memory

outside extension code’s data
–  checks that sandboxing instructions in place

before all unsafe instructions
12

User need not trust sandboxer; only verifier

SFI Unit of Isolation: Fault Domain

•  SFI confines untrusted code within a fault
domain, in same address space (process) as
trusted code

•  Fault domain consists of:
– Unique ID (used for access control on syscalls)
–  Code segment: virtual address range with same

unique high-order bits, used to hold code
– Data segment: virtual address range with same

unique high-order bits, used to hold data
•  Segment ID: unique high-order bits for a

segment

13

Fault Domain Example

•  Segment IDs are
12 bits long in
example

•  Separate segments
for code and data
allow distinguishing
addresses as falling
in one or other

14

Code
Segment

Data
Segment

0x10000000

0x100fffff

0x10100000

0x101fffff

virtual address

stack, heap,
static data

fault
domain

0x10200000 app memory

Sandboxing Memory

•  Untrusted code should only be able to:
–  jump within its fault domain’s code segment
– write within its fault domain’s data segment

•  Sandboxer must ensure all jump, call, and
memory store instructions comply with above

•  Two types of memory addresses in
instructions:
–  direct: complete address is specified statically in

instruction
–  indirect: address is computed from register’s

value

15

Sandboxing Memory (2)

•  For directly addressed memory
instructions, sandboxer should only emit:
– directly addressed jumps and calls whose

targets fall in fault domain’s code segment
• e.g., JUMP 0x10030000

– directly addressed stores whose targets fall in
fault domain’s data segment
• e.g., STORE 0x10120000, R1

•  Directly addressed jumps, calls, stores can
be made safe statically

16

Sandboxing Indirectly Addressed
Memory

•  Indirectly addressed jumps, calls, stores
harder to sandbox—full address depends
on register whose value not known
statically
– e.g., STORE R0, R1
– e.g., JR R3

•  These are unsafe instructions that must be
made safe at runtime

17

Sandboxing Indirectly Addressed
Memory (2)

•  Suppose unsafe instruction is
STORE R0, R1 ; write R1 to Mem[R0]

•  Sandboxer rewrites code to:
MOV Ra, R0 ; copy R0 into Ra
SHR Rb, Ra, Rc ; Rb = Ra >> Rc, to get segment ID
CMP Rb, Rd ; Rd holds correct data segment ID
BNE fault ; wrong data segment ID
STORE Ra, R1 ; Ra in data segment, so do write

•  Ra, Rc, and Rd are dedicated—may not be
used by extension code

18

Sandboxing Indirectly Accessed
Memory (3)

•  Why does rewritten code use
STORE Ra, R1

•  and not
STORE R0, R1

•  After all, R0 has passed the check!
•  Extension code may jump directly to

STORE, bypassing check instructions!
•  Because Ra, Rc, Rd are dedicated, Ra will

always contain safe address inside data
segment

19

Sandboxing Indirectly Accessed
Memory (3)

•  Why does rewritten code use
STORE Ra, R1

•  and not
STORE R0, R1

•  After all, R0 has passed the check!
•  Extension code may jump directly to

STORE, bypassing check instructions!
•  Because Ra, Rc, Rd are dedicated, Ra will

always contain safe address inside data
segment

20

Remember: extension code may not set
dedicated registers!

Sandboxing Indirectly Accessed
Memory (4)

•  Costs of first sandboxing scheme for
indirectly addressed memory:
–  adds 4 instructions before each indirect store
–  uses 6 registers, 5 of which must be dedicated

(never available to extension)
•  example used 3 dedicated registers, but need 2 more

for sandboxing unsafe code addresses

•  Can we do better, and get away with fewer
added instructions?

•  Yes, if we give up being able to identify
which instruction accessed outside sandbox!

21

Faster Sandboxing of Indirect
Addresses

•  Idea: don’t check if target address is in
segment; force it to be in segment

•  So we transform STORE R0, R1 into:
AND Ra, R0, Re ; clear segment ID bits in Ra
OR Ra, Ra, Rf ; set segment ID to correct value
STORE Ra, R1 ; do write to safe target address

•  Now segment ID bits in Ra will always be
correct; can write anywhere in segment, but
not outside it

•  Cost: 2 added instructions, 5 dedicated
registers

22

Faster Sandboxing of Indirect
Jumps and Calls

•  Very similar to data address sandboxing
•  Transform JR R0 as follows:

AND Rg, R0, Re ; clear segment ID bits in Rg
OR Rg, Rg, Rh ; set segment ID to correct value
JR Rg ; do jump to safe target address

•  N.B. use of separate dedicated registers
Rg for code target address, Rh for code
segment ID

•  Return from function similar, too (to
sandbox return address)

23

Optimization: Guard Zones

•  Some instructions use “register+offset”
addressing: they use register as base, and
supply offset for CPU to add to it

•  To sandbox such an instruction, SFI would
need to do additional ADD to compute base
+offset

•  Clever insight: offsets are of limited size,
because of instruction encoding (+/- 64K on
MIPS)

•  So if base in correct segment, offset could
stray no more than 64K outside that segment

24

Guard Zones (2)

•  Surround each
segment with 64K
guard zone of
unmapped pages

•  Ignore offsets
when sandboxing!

•  Accesses to guard
zones cause traps

•  Saves one ADD for
reg+offset instrs

25

Code
Segment

Data
Segment

0x10000000

0x100fffff

0x10200000

0x102fffff

virtual address

0x10310000 app memory

guard zone
0x0fff0000

guard zone 0x1010ffff

guard zone

guard zone

0x101f0000

0x1030ffff

Optimization: Stack Pointer

•  Insight: stack pointer is read far more
often than it’s written; used as base
address for many reg+offset instructions

•  SFI doesn’t sandbox uses of stack pointer
as base address; instead sandboxes
setting of stack pointer, so stack pointer
always contains safe value

•  Reduces number of instructions that pay
sandboxing overhead

26

Verifier

•  Upon receiving (supposedly) sandboxed
binary, verifier must ensure all instructions
safe

•  For instructions that use direct addressing,
easy to check statically that segment IDs
in addresses are correct

•  For those that use indirect addressing,
verifier must ensure instruction preceded
by full set of sandboxing instructions

27

Verifier (2)

•  Verifier must ensure no privileged
instructions in code

•  Verifier must ensure PC-relative branches
fall in code segment

•  If sandboxed code fails any of these
checks, verifier rejects it

•  Otherwise, code is correctly sandboxed

28

SFI Limitations on x86

•  MIPS instructions fixed-length; x86
instructions variable-length
– Result: can jump into middle of x86 instruction!
–  e.g., binary for AND eax, 0x80CD is

25 CD 80 00 00
–  If adversary jumps to second byte, he executes

the instruction CD 80, which traps to a system
call on Linux!

–  Jump to mid-instruction on x86 may even
jump out of fault domain into app code!

•  x86 has very few registers (4 general-
purpose ones), so cannot dedicate registers
easily

29

SFI vs. Exploits

•  Simple stack-smashing, injecting code in
stack buffer?
– can’t execute own injected code—can’t jump

to data segment
•  Return-to-libc?

– can overwrite return address with one within
fault domain’s code segment—so can do
return-to-libc within extension

•  Format string vulnerabilities?
– same story as above

30

SFI vs. Exploits: Lessons

•  SFI allows write (including buffer overrun,
%n overwrite) to extension’s data

•  SFI allows jumps anywhere in extension’s
code segment

•  …so attacker can exploit extension’s
execution

•  …and on x86, can probably cause jump
out of fault domain

31

SFI vs. Exploits: Lessons

•  SFI allows write (including buffer overrun,
%n overwrite) to extension’s data

•  SFI allows jumps anywhere in extension’s
code segment

•  …so attacker can exploit extension’s
execution

•  …and on x86, can probably cause jump
out of fault domain

32

To be fair, SFI wasn’t designed for x86, and
wasn’t designed to prevent exploits, but
rather to isolate untrusted extension from
main application.

SFI Summary

•  Confines writes and control transfers in
extension’s data and code segments,
respectively

•  Can support direct calls to allowed
functions in trusted (app) code

•  Prevents execution of privileged
instructions

•  Any write or control transfer within
extension’s memory is allowed

•  Requires dedicated registers

33

CFI: Control-Flow Integrity

•  Follow-on to SFI; works on x86
•  Idea: examine control flow graph (CFG) of

program, which includes all functions and all
transfers of control between them (e.g., calls
of named functions, returns from them)

•  Doesn’t require dedicated registers like SFI
•  Finds all instruction boundaries
•  Adds instructions to enforce that all jumps,

branches, calls, returns transfer control to
valid target found in CFG

34

CFI (2)

•  Prevents return to injected code by
overwriting return address:
–  transition to return address of injected code

not in CFG
•  Prevents return-to-libc attack:

– enforces that return instruction in function f()
can only transfer control to next instruction in
some function that calls f()

•  Further reading (not examinable): Abadi et
al., Control-Flow Integrity, CCS 2005

35

