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Host-Based Exploit Defenses 

•  Firewalls: defenses against worms in-network 
–  Can see lots of traffic at one monitoring point 
–  Can filter traffic for many vulnerable hosts 
–  Limited information available: only packet fields, 

payload contents 

•  Today: identifying and defending against 
exploits (and so against worms) on hosts 
–  Much more information: see effect of network request 

on running process’s execution! 
–  Potentially more accurate 
–  Requires changes to host software  
–  Performance concern; don’t want to slow busy server 



 
3 

Outline 

•  W   X page protections 
– and limitations 

•  Address Space Layout Randomization 
– and limitations 

•  TaintCheck 
– and limitations 
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Goals for Host-Based Exploit Defenses 

•  Works on executables 
–  …and so for legacy code 
–  Source code often not available 

•  Prevents broadest possible range of exploits 
•  Low/no false positives, false negatives 
•  Minimal performance reduction 

–  Server operator won’t want to sacrifice performance 
–  Attacker may recognize server protected if 

performance slows—and not send malicious request! 
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W   X Page Protections 

•  Recall from OS: CPU implements page protection 
in hardware 
–  For each 4K memory page, permission bits specified 

in page table entry in kernel: read, write 
•  Central problem in many exploits: 

–  Code supplied by user in input data 
–  Execution transferred to user’s input data 

•  Idea: don’t let CPU execute instructions 
stored in data pages 
–  i.e., each page should either be writable or 

executable, but not both: W    X 
–  Text pages: X, not W 
–  Data (stack, heap) pages: W, not X 
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W   X Details 

•  Originally no X bit in Intel CPUs; just R and W, 
all R pages implicitly X 

•  AMD and Intel introduced “NX” bit (no execute); 
available on today’s processors (in PAE mode) 
–  Not a new idea; present in, e.g., DEC Alpha 
–  Used by Linux PaX and Windows XP SP2 

•  Linux PaX implements W   X for x86 processors 
without NX bit hardware 
–  Based on segment limit registers 
–  Halves address space available to each process 
–  Minor performance reduction 

•  W   X breaks just-in-time (JIT) code generation 
in legacy applications! 
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W   X Hole: Return-to-libc Attacks 

•  Instead of putting 
shellcode on stack, 
can put args there, 
overwrite return 
address with pointer 
to well known library 
function 
–  e.g., 
system(“/bin/sh”); 

•  Return-to-libc attack 
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Address Space Layout Randomization 
(ASLR) 

•  Central observation: attacker must predict 
addresses 
–  e.g., shellcode buffer address, libc function address, 

string argument address 

•  Idea: randomize addresses in process 
–  With high probability, attacker will guess wrong 
–  Jump to unmapped memory: crash 
–  Jump to invalid instruction stream: crash 

•  Useful as efficient exploit detector 
–  Memory faults or illegal instructions suggest exploit 
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ASLR Implementation: PaX for Linux 

•  Linux process contains three memory regions: 
–  Executable: text, init data, uninit data 
–  Mapped: heap, dynamic (shared) libraries, thread 

stacks, shared memory 
–  Stack: user stack 

•  ASLR adds random offset to each area when 
process created 
–  Efficient; easily supported by virtual memory hardware 
–  16, 16, 24 bits randomness, respectively 

•  Mapped offset limited to 16 bits 
–  bits 28-31 cannot be changed; would interfere with big 

mmap()s 
–  bits 0-11 cannot be randomized; would make 

mmap()ed pages not be page-aligned 
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Derandomization Attack on ASLR 
[Shacham, Boneh et al.] 

•  16 bits not that big; try to guess random 
offset added to mapped area 

•  Once know random offset, can predict 
addresses of shared libraries 
–  thus libc function addresses 
– …so can mount return-to-libc attack 

•  Two phases: 
– brute-force random offset to mapped area 
– compute “derandomized” address of syscall(), 

use in return-to-libc attack 
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Derandomization Attack Details 

•  Target: “classic” stack buffer overflow placed 
in Apache web server 

 char buf[64]; 
… 
strcpy(buf, input); 

•  Plan: 
–  Try to return to usleep(), guessing random offset 

for mapped area each time 
–  If guess wrong, target process crashes, closes 

connection immediately; parent forks new child 
(with same random offset) 

–  If guess right, target process delays in usleep(), 
then crashes and closes connection immediately 
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Derandomization Attack: Phase 1 

•  Know offset of usleep() 
within libc, know base of 
mapped area (w/o 
randomization) 

•  Each return address guess: 
base + usleep() offset + 
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•  If guess wrong, crash 
•  If guess right, usleep() 
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Derandomization Attack: Phase 2 

•  Now know random offset of mapped area 
•  Compute exact address of system() libc function: 

address = base + system() offset in libc + guessed 
random offset 

•  Perform return-to-libc attack using system(), as in 
earlier example; “/bin/sh” in buf[] on stack 

•  Turns out caller’s frame contains pointer to buf[]! 
•  So overwrite stack past buf[] with several copies 

of address of any ret instruction found in libc, 
followed by address of system() 
–  Repeatedly pops stack until returns to system(), with 

pointer to buf[] on top of stack (argument position) 
–  Details in paper, top of p. 8 
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Derandomization Attack: 
Performance 

•  Many trials of phase 1 necessary to learn 
random offset of mapped area on server 

•  For 1.8 GHz AMD Athlon server, attacked 
by 2.4 GHz Pentium 4 client: 
– 216 seconds on average to complete both 

phases 
– 200 bytes of traffic per probe; 12.8 MB data 

from client worst-case, 6.4 MB data in 
expectation 
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Can ASLR Be Made More Robust? 

•  64-bit CPU architectures 
–  Probably 40 bits of random offset; much harder to 

brute-force without attracting attention; so some help 
with new hardware 

•  Re-randomize address space after every crash 
(probe) 
–  For single randomization at startup, expected number 

of probes: 2n-1 

–  For re-randomized n-bit random offset, expected 
number of probes: 2n 

–  Only twice as many probes needed as in attack when 
randomizing once at start! 

–  Not promising… 
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TaintCheck: Detecting Exploits by 
Analyzing Server Execution 

•  Approach: instrument program to monitor 
its own execution, detect when exploit 
occurs 

•  Goals: 
– Work on binaries (no source code required) 
– Low false positives/false negatives 
– Detect wide range of exploits (new varieties 

all the time; point solutions unconvincing) 
– Help humans understand how exploit worked, 

after the fact; how did data flow from 
malicious input to point of exploit? 
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TaintCheck: 
Basic Execution Monitoring Idea 

•  Many exploits use data supplied by user 
(or derived from data supplied by user) to 
subvert control flow of program 
– Need to modify jump, call instruction target 

addresses, or function return addresses 
•  During execution, before any control 

transfer instruction, validate target 
address not derived from user-supplied 
data 
–  If it is, exploit detected; raise alarm 
–  If it isn’t, continue execution normally 
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Tainting User Input 
and Data Derived from It 

•  User is the source of exploits; don’t trust data 
from him 

•  Mark all data from user (received from network, 
or from input files) as tainted 

•  Propagate taint during execution 
–  Results of operations on tainted data should be 

tainted 
–  Copies of tainted data should be tainted 

•  Clear taint when tainted data overwritten with 
untainted data 

•  How do we get a precompiled program 
executable to behave this way? 



 
29 

Valgrind: Modifying Executables at 
Runtime 

•  Run executable under Valgrind system 
•  Give Valgrind instructions on how to instrument 

executable 
–  literally, what instructions or function calls to search 

for, and what instructions to add to them 

•  Valgrind’s processing loop: 
–  Fetch next basic block of program (dictated by IP/PC) 
–  Translate code into UCode, Valgrind’s instruction set 
–  Add instrumentation code to Valgrind UCode 
–  Translate code back to x86; cache for reuse 
–  Execute instrumented x86 basic block 
–  Repeat… 
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Adding Instrumentation: 
Tracking Tainted Data 

•  After I/O system calls: 
–  If reading from socket, mark target buffer contents as 

tainted 
•  After all memory load instructions: 

–  If source memory tainted, mark register tainted 
–  If source memory untainted, mark register untainted 

•  After all memory store instructions: 
–  If source register tainted, mark memory tainted 
–  If source register untainted, mark memory untainted 

•  After all arithmetic instructions: 
–  If any operand tainted, mark result tainted 
–  If no operands tainted, mark result untainted 
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Adding Instrumentation: 
Detecting Invalid Uses of Tainted Data 

•  Before all control transfer instructions, add 
code: 
–  If register or memory location holding target 

function pointer is tainted, raise alarm 
– Means derived from user input; should never 

happen! 

•  Needed before each jump, call, ret 
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Tracking Taint: Shadow Memory 

•  For every byte of memory, keep shadow 
memory that tracks taint status 

•  Simple interface: 
–  Is-Tainted(addr) -> {T | F} 
–  Taint(addr, len), Untaint(addr, len) 

•  Two modes of operation 
–  Fast: single bit for each byte of memory 
–  Detailed: 4-byte pointer to Taint data structure, 

containing details of system call, stack, value; written 
at time of tainting 

–  Detailed mode useful for analysis of exploits 
•  Implementation greatly affects performance 

–  Space vs. time tradeoff: packed vs. unpacked 
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Corner Case: Implicit Flows 

•  Suppose x tainted, then execute: 
 if (x == 0) 
  y = 0; 
 else 
  y = 1; 

•  TaintCheck doesn’t taint processor condition 
flags 
–  Would often result in inappropriate propagation of 

taint; false positives 
•  But x clearly influences value of y, and y could 

later influence other values 
•  Result: false negatives are possible 

–  e.g., image compression bit-twiddling code? 
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Exploit Detection Coverage 

•  TaintCheck can also instrument function and system calls 
•  e.g., check printf()-like library calls for tainted format 

string args 
•  Built system successfully detects many overwrite exploits 

(return address, function pointer, format string, GOT 
entry) 
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TaintCheck’s Performance: 
Monitoring Apache 

•  Lots of extra instructions… 
•  Exec time not really right metric; throughput better metric 
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TaintCheck: Modes of Use (1) 

•  Identify worm payloads 
– Can be configured to store trace of tainted 

data flow from all inputs 
– When exploit detected, can walk back to 

identify input that led to exploit 
– Could pass worm payloads to signature 

generation system, like Autograph 
• Much more accurate than port-scanner heuristic! 

•  Prevent exploit of server 
– Halt execution upon exploit detection 
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TaintCheck: Modes of Use (2) 

•  Probably too slow for production servers 
– 25X server farm size increase for Amazon? 

•  Could possibly deploy on a few servers: 
sample traffic 
– Would slow detection of new worm, though; 

only sampling some inputs 
– Adversary may possibly be able to detect 

monitored servers by their slow response 
time; avoid sending them exploit payload 


