
Exploit Defenses:
ASLR, W X, TaintCheck

Brad Karp
UCL Computer Science

CS GZ03 / M030
3rd December 2014

2

Host-Based Exploit Defenses

•  Firewalls: defenses against worms in-network
–  Can see lots of traffic at one monitoring point
–  Can filter traffic for many vulnerable hosts
–  Limited information available: only packet fields,

payload contents

•  Today: identifying and defending against
exploits (and so against worms) on hosts
–  Much more information: see effect of network request

on running process’s execution!
–  Potentially more accurate
–  Requires changes to host software
–  Performance concern; don’t want to slow busy server

3

Outline

•  W X page protections
– and limitations

•  Address Space Layout Randomization
– and limitations

•  TaintCheck
– and limitations

4

Goals for Host-Based Exploit Defenses

•  Works on executables
–  …and so for legacy code
–  Source code often not available

•  Prevents broadest possible range of exploits
•  Low/no false positives, false negatives
•  Minimal performance reduction

–  Server operator won’t want to sacrifice performance
–  Attacker may recognize server protected if

performance slows—and not send malicious request!

5

W X Page Protections

•  Recall from OS: CPU implements page protection
in hardware
–  For each 4K memory page, permission bits specified

in page table entry in kernel: read, write
•  Central problem in many exploits:

–  Code supplied by user in input data
–  Execution transferred to user’s input data

•  Idea: don’t let CPU execute instructions
stored in data pages
–  i.e., each page should either be writable or

executable, but not both: W X
–  Text pages: X, not W
–  Data (stack, heap) pages: W, not X

6

W X Details

•  Originally no X bit in Intel CPUs; just R and W,
all R pages implicitly X

•  AMD and Intel introduced “NX” bit (no execute);
available on today’s processors (in PAE mode)
–  Not a new idea; present in, e.g., DEC Alpha
–  Used by Linux PaX and Windows XP SP2

•  Linux PaX implements W X for x86 processors
without NX bit hardware
–  Based on segment limit registers
–  Halves address space available to each process
–  Minor performance reduction

•  W X breaks just-in-time (JIT) code generation
in legacy applications!

7

W X Hole: Return-to-libc Attacks

•  Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
–  e.g.,
system(“/bin/sh”);

•  Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

8

W X Hole: Return-to-libc Attacks

•  Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
–  e.g.,
system(“/bin/sh”);

•  Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

9

W X Hole: Return-to-libc Attacks

•  Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
–  e.g.,
system(“/bin/sh”);

•  Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

10

W X Hole: Return-to-libc Attacks

•  Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
–  e.g.,
system(“/bin/sh”);

•  Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

11

W X Hole: Return-to-libc Attacks

•  Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
–  e.g.,
system(“/bin/sh”);

•  Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

0x61a4ac14

12

W X Hole: Return-to-libc Attacks

•  Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
–  e.g.,
system(“/bin/sh”);

•  Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

0x61a4ac14

0x80707308

13

Address Space Layout Randomization
(ASLR)

•  Central observation: attacker must predict
addresses
–  e.g., shellcode buffer address, libc function address,

string argument address

•  Idea: randomize addresses in process
–  With high probability, attacker will guess wrong
–  Jump to unmapped memory: crash
–  Jump to invalid instruction stream: crash

•  Useful as efficient exploit detector
–  Memory faults or illegal instructions suggest exploit

14

ASLR Implementation: PaX for Linux

•  Linux process contains three memory regions:
–  Executable: text, init data, uninit data
–  Mapped: heap, dynamic (shared) libraries, thread

stacks, shared memory
–  Stack: user stack

•  ASLR adds random offset to each area when
process created
–  Efficient; easily supported by virtual memory hardware
–  16, 16, 24 bits randomness, respectively

•  Mapped offset limited to 16 bits
–  bits 28-31 cannot be changed; would interfere with big

mmap()s
–  bits 0-11 cannot be randomized; would make

mmap()ed pages not be page-aligned

15

Derandomization Attack on ASLR
[Shacham, Boneh et al.]

•  16 bits not that big; try to guess random
offset added to mapped area

•  Once know random offset, can predict
addresses of shared libraries
–  thus libc function addresses
– …so can mount return-to-libc attack

•  Two phases:
– brute-force random offset to mapped area
– compute “derandomized” address of syscall(),

use in return-to-libc attack

16

Derandomization Attack Details

•  Target: “classic” stack buffer overflow placed
in Apache web server

 char buf[64];
…
strcpy(buf, input);

•  Plan:
–  Try to return to usleep(), guessing random offset

for mapped area each time
–  If guess wrong, target process crashes, closes

connection immediately; parent forks new child
(with same random offset)

–  If guess right, target process delays in usleep(),
then crashes and closes connection immediately

17

Derandomization Attack: Phase 1

•  Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

•  Each return address guess:
base + usleep() offset +

guess in [0, 64K]
•  If guess wrong, crash
•  If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses

saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…

usleep()

18

Derandomization Attack: Phase 1

•  Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

•  Each return address guess:
base + usleep() offset +

guess in [0, 64K]
•  If guess wrong, crash
•  If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses

saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…

usleep()

19

Derandomization Attack: Phase 1

•  Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

•  Each return address guess:
base + usleep() offset +

guess in [0, 64K]
•  If guess wrong, crash
•  If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses

saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…

usleep()

0xdeadbeef

20

Derandomization Attack: Phase 1

•  Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

•  Each return address guess:
base + usleep() offset +

guess in [0, 64K]
•  If guess wrong, crash
•  If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses

saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…

usleep()

0xdeadbeef

usleep()
guess

21

Derandomization Attack: Phase 1

•  Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

•  Each return address guess:
base + usleep() offset +

guess in [0, 64K]
•  If guess wrong, crash
•  If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses

saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…

usleep()

0xdeadbeef

usleep()
guess

0xdeadbeef

22

Derandomization Attack: Phase 1

•  Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

•  Each return address guess:
base + usleep() offset +

guess in [0, 64K]
•  If guess wrong, crash
•  If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses

saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…

usleep()

0xdeadbeef

usleep()
guess

0x01010101

0xdeadbeef

23

Derandomization Attack: Phase 2

•  Now know random offset of mapped area
•  Compute exact address of system() libc function:

address = base + system() offset in libc + guessed
random offset

•  Perform return-to-libc attack using system(), as in
earlier example; “/bin/sh” in buf[] on stack

•  Turns out caller’s frame contains pointer to buf[]!
•  So overwrite stack past buf[] with several copies

of address of any ret instruction found in libc,
followed by address of system()
–  Repeatedly pops stack until returns to system(), with

pointer to buf[] on top of stack (argument position)
–  Details in paper, top of p. 8

24

Derandomization Attack:
Performance

•  Many trials of phase 1 necessary to learn
random offset of mapped area on server

•  For 1.8 GHz AMD Athlon server, attacked
by 2.4 GHz Pentium 4 client:
– 216 seconds on average to complete both

phases
– 200 bytes of traffic per probe; 12.8 MB data

from client worst-case, 6.4 MB data in
expectation

25

Can ASLR Be Made More Robust?

•  64-bit CPU architectures
–  Probably 40 bits of random offset; much harder to

brute-force without attracting attention; so some help
with new hardware

•  Re-randomize address space after every crash
(probe)
–  For single randomization at startup, expected number

of probes: 2n-1

–  For re-randomized n-bit random offset, expected
number of probes: 2n

–  Only twice as many probes needed as in attack when
randomizing once at start!

–  Not promising…

26

TaintCheck: Detecting Exploits by
Analyzing Server Execution

•  Approach: instrument program to monitor
its own execution, detect when exploit
occurs

•  Goals:
– Work on binaries (no source code required)
– Low false positives/false negatives
– Detect wide range of exploits (new varieties

all the time; point solutions unconvincing)
– Help humans understand how exploit worked,

after the fact; how did data flow from
malicious input to point of exploit?

27

TaintCheck:
Basic Execution Monitoring Idea

•  Many exploits use data supplied by user
(or derived from data supplied by user) to
subvert control flow of program
– Need to modify jump, call instruction target

addresses, or function return addresses
•  During execution, before any control

transfer instruction, validate target
address not derived from user-supplied
data
–  If it is, exploit detected; raise alarm
–  If it isn’t, continue execution normally

28

Tainting User Input
and Data Derived from It

•  User is the source of exploits; don’t trust data
from him

•  Mark all data from user (received from network,
or from input files) as tainted

•  Propagate taint during execution
–  Results of operations on tainted data should be

tainted
–  Copies of tainted data should be tainted

•  Clear taint when tainted data overwritten with
untainted data

•  How do we get a precompiled program
executable to behave this way?

29

Valgrind: Modifying Executables at
Runtime

•  Run executable under Valgrind system
•  Give Valgrind instructions on how to instrument

executable
–  literally, what instructions or function calls to search

for, and what instructions to add to them

•  Valgrind’s processing loop:
–  Fetch next basic block of program (dictated by IP/PC)
–  Translate code into UCode, Valgrind’s instruction set
–  Add instrumentation code to Valgrind UCode
–  Translate code back to x86; cache for reuse
–  Execute instrumented x86 basic block
–  Repeat…

30

Adding Instrumentation:
Tracking Tainted Data

•  After I/O system calls:
–  If reading from socket, mark target buffer contents as

tainted
•  After all memory load instructions:

–  If source memory tainted, mark register tainted
–  If source memory untainted, mark register untainted

•  After all memory store instructions:
–  If source register tainted, mark memory tainted
–  If source register untainted, mark memory untainted

•  After all arithmetic instructions:
–  If any operand tainted, mark result tainted
–  If no operands tainted, mark result untainted

31

Adding Instrumentation:
Detecting Invalid Uses of Tainted Data

•  Before all control transfer instructions, add
code:
–  If register or memory location holding target

function pointer is tainted, raise alarm
– Means derived from user input; should never

happen!

•  Needed before each jump, call, ret

32

Tracking Taint: Shadow Memory

•  For every byte of memory, keep shadow
memory that tracks taint status

•  Simple interface:
–  Is-Tainted(addr) -> {T | F}
–  Taint(addr, len), Untaint(addr, len)

•  Two modes of operation
–  Fast: single bit for each byte of memory
–  Detailed: 4-byte pointer to Taint data structure,

containing details of system call, stack, value; written
at time of tainting

–  Detailed mode useful for analysis of exploits
•  Implementation greatly affects performance

–  Space vs. time tradeoff: packed vs. unpacked

33

Corner Case: Implicit Flows

•  Suppose x tainted, then execute:
 if (x == 0)
 y = 0;
 else
 y = 1;

•  TaintCheck doesn’t taint processor condition
flags
–  Would often result in inappropriate propagation of

taint; false positives
•  But x clearly influences value of y, and y could

later influence other values
•  Result: false negatives are possible

–  e.g., image compression bit-twiddling code?

34

Exploit Detection Coverage

•  TaintCheck can also instrument function and system calls
•  e.g., check printf()-like library calls for tainted format

string args
•  Built system successfully detects many overwrite exploits

(return address, function pointer, format string, GOT
entry)

35

TaintCheck’s Performance:
Monitoring Apache

•  Lots of extra instructions…
•  Exec time not really right metric; throughput better metric

36

TaintCheck: Modes of Use (1)

•  Identify worm payloads
– Can be configured to store trace of tainted

data flow from all inputs
– When exploit detected, can walk back to

identify input that led to exploit
– Could pass worm payloads to signature

generation system, like Autograph
• Much more accurate than port-scanner heuristic!

•  Prevent exploit of server
– Halt execution upon exploit detection

37

TaintCheck: Modes of Use (2)

•  Probably too slow for production servers
– 25X server farm size increase for Amazon?

•  Could possibly deploy on a few servers:
sample traffic
– Would slow detection of new worm, though;

only sampling some inputs
– Adversary may possibly be able to detect

monitored servers by their slow response
time; avoid sending them exploit payload

