The Kerberos
Authentication System

Brad Karp
UCL Computer Science

A
I

CS GzZ03 / M030
15th November 2013



Why Study Kerberos?

e One of most widely used authentication
systems, implemented in many, many
UNIXes for a variety of services

e Simple example of use of cryptography to
solve practical authentication problems

o Imperfect; weaknesses instructive



Kerberos: Goals

e Authentication of diverse entities, for diverse
services:

— Users, client machines, server machines
— File systems, remote login, file transfer, printing, &c.

o Authentication in an “open environment”

— Users may be superuser on their own workstations
(so may adopt any user ID if credentials over network
unauthenticated); hardware not centrally controlled

— Same user population maY_ use many machines and
|

services (e.g., labs of public-access machines on a
campus)

e Drop-in replacement of passwords for pre-
existing protocols

— Convenient; strength of security?



Kerberos Model: Central Authority

e Within a site (e.g., MIT), a central
database server stores names and secret
keys for all principals

— Keys are for 56-bit DES symmetric-key cipher

— Now brute-forceable; more reasonable at time
of Kerberos’ first use (1988)

o All users and machines are principals,
named with human-readable names

e All principals trust central database server



Kerberos Principal Names

Users: e.qg., bkarp

— Can have instances; sub-names of a principal, e.qg.,
bkarp.mail, bkarp.root

Machines: e.g., boffin, arkell, sonic

Services: e.g., rlogin.sonic (instance of the rlogin
service running on sonic)

Site name: realm; all machines in one
administrative domain share one central
Kerberos database, in same realm

name.instance@realm, e.qg., bkarp@UCL.AC.UK



Kerberos Protocol

e Goal: mutually authenticated communication
— Two principals wish to communicate

— Principals know each other by name in central
database

— Kerberos establishes shared secret between the two

— Can use shared secret to encrypt or MAC subsequent
communication

— [Few “Kerberized” services encrypt, and none MAC!]
e Approach: leverage keys shared with central

database

— Central database trusted by/has keys for all principals



Kerberos Credentials

e Client can either be user or machine,
depending on context

e To talk to server s, client c needs shared
secret key and ticket:

— Session key: K, . (randomly generated by
central database)

— Ticket:
T = {s, ¢, addr,, timestamp, lifetime, K _},_
(where K, is key s shares with database)

— Only server s can decrypt ticket




Kerberos Credentials (2)

o Given ticket, client creates authenticator:

— Authenticator:
A = {c, addr, timestamp}__

— Client must know K . to create authenticator
— Authenticator can only be used once
e Client presents both ticket T and authenticator A
to server when requesting an operation
— T convinces server that K . was given to ¢
— A intended to prevent replay of requests

e “"Kerberized” protocols use authenticator in place
of password



Getting the User’s First Ticket

User logs in at console with username and
password (username is Kerberos name)

Kerberized login program retrieves initial ticket

for user:

— Client machine sends to Kerberos database:
c, tgs
(tgs is principal name for ticket-granting service)

— Server responds with:
{KC,thl {Tc,tgs}ths}Kc
— where
T.gs = 1G5, ¢, addr,, timestamp, lifetime, K

— Client decrypts server’s response with
K. = H(password)

c,tgs



Requesting a Service

e Client c (e.qg., user bkarp) wishes to use a
service on s, already holds K_

e Client requests ticket from tgs as follows:

— Client sends to tgs:
Sy {TCItQS}ths’ {AC}Kc,tgs

— tgs replies to client with ticket for service on
that server:

{{TC s}KSl C s}KC tgs

— where K. . is a new, randomly generated
session key for use between c and s

10



Using a Service

e Once client holds ticket for service, uses it
with authenticator to request operation
from server:

— Client sends to s:
service name, {T, s}KSI{AC}KC s

— Server validates T.. and A, and executes
operation if they are valid

e Server uses timestamps and expiration
times to invalidate stale, “future”, replayed
requests

11



Kerberos: Summary of Message Flow

1. Request for TGS ticket:
C, tgs

2. Ticket for TGS:
{Kc,tgy {Tc,tgs}thS}Kc

3. Request for Server ticket:
S {TCItQS}ths’ {AC}Kc,tgs

4. Ticket for Server:
{{TC,S}KS’ Kc,s}KC,tg S

5. Request for Service:
service name, {Tc,s}Ksr{Ac}Kc,s

12




Ticket Lifetime

How should we choose ticket lifetimes?

Convenience: longer ticket-granting ticket
lifetime = user must type password less often

Performance: longer service ticket lifetime >
client must request new service ticket less often

Risk: longer ticket lifetime lengthens period
when ticket can be stolen, abused

MIT Athena implementation destroys ticket-
granting ticket when user logs out

13



Kerberos Security Weaknesses

e Vulnerability to replay attacks; default
authenticator lifetime 5 minutes

e Reliance on synchronized clocks across
nodes

e Storage of tickets on workstations

e No way to change compromised password
securely

e Key database focal point for attack

e Hard to upgrade key database (relied on
by all nodes in system)

14



Kerberos User Inconveniences

e Large (e.qg., university-wide) administrative
realms.
— University-wide admins often on critical path
— Departments can't add users or set up new servers
— Can't develop new services without central admins

— Can't upgrade software/protocols without central
admins

— Central admins have monopoly servers/services (can't
set up your own without a principal)

e Rigid; what if user from realm A wants to
authenticate himself to host at realm B?

e Ticket expirations
— Must renew tickets every 12-23 hours
— How to create long-running background jobs? 15



