User Authentication and
Cryptographic Primitives

Brad Karp
UCL Computer Science

A
I

CS GzZ03 / M030
13th November 2013



Outline

Authenticating users
— Local users: hashed passwords
— Remote users: s/key

— Unexpected covert channel: the Tenex password-
guessing attack

Symmetric-key-cryptography
Public-key cryptography usage model
RSA algorithm for public-key cryptography

— Number theory background
— Algorithm definition



Dictionary Attack on Hashed Password
Databases

e Suppose hacker obtains copy of password file
(until recently, world-readable on UNIX)

e Compute H(x) for 50K common words

e String compare resulting hashed words against
passwords in file

e Learn all users’ passwords that are
common English words after only 50K
computations of H(x)!

e Same hashed dictionary works on all
password files in world!



Salted Password Hashes

Generate a random string of bytes, r

~or user password x, store [H(r,x), r] in
password file

Result: same password produces different result
on every machine
— So must see password file before can hash dictionary

— ...and single hashed dictionary won't work for multiple
hosts

Modern UNIX: password hashes salted; hashed
password database readable only by root




Salted Password Hashes

e Generate a random string of bytes, r

Dictionary attack still possible after attacker
sees password file!

Users should pick passwords that aren’t close

to dictionary words.
— 50 Must see password tile berore can hash dictionary

— ...and single hashed dictionary won't work for multiple
hosts
e Modern UNIX: password hashes salted; hashed
password database readable only by root



Tenex Password Attack:
An Information Leak

Tenex OS stored directory passwords in cleartext

OS supported system call:
— pw_validate(directory, pw)

Implementation simply compared pw to stored
password in directory, char by char

Clever attack:

— Make pw span two VM pages, put 15t char of guess in
first page, rest of guess in second page

— See whether get a page fault—if not, try next value
for 1st char, &c.; if so, first char correct!

— Now position 2" char of guess at end of 1t page, &c.
— Result: guess password in time linear in length!
6



Tenex Password Attack:
An Information Leak

e Tenex OS stored directory passwords in cleartext

—

Lessons:
Don’t store passwords in cleartext.

Information leaks are real, and can be
extremely difficult to find and eliminate.

— Make pw span two VM pages, put 15t char of guess in
first page, rest of guess in second page

— See whether get a page fault—if not, try next value
for 1st char, &c.; if so, first char correct!

— Now position 2" char of guess at end of 1t page, &c.
— Result: guess password in time linear in length!

7



Remote User Authentication

Consider the case where Alice wants to log in
remotely, across LAN or WAN from server

Suppose network links can be eavesdropped by
adversary, Eve

Want scheme immune to replay: if Eve
overhears messages, shouldn’t be able to log in
as Alice by repeating them to server

Clear non-solutions:
— Alice logs in by sending {alice, password}
— Alice logs in by sending {alice, H(password)}



Remote User Authentication (2)

e Desirable properties:

— Message from Alice must change
unpredictably at each login

— Message from Alice must be verifiable at
server as matching secret value known only to
Alice

e Can we achieve these properties using
only a cryptographic hash function?



Remote User Authentication: s/key

Denote by H"(x) n successive applications of
cryptographic hash function H() to x

— i.e., H3(x) = H(H(H(x)))

Store in server’s user database:
alice:99:H°’ (password)

At first login, Alice sends:

{alice, H*®(password)}

Server then updates its database to contain:
alice:98:H”® (password)
At next login, Alice sends:

{alice, H%/(password)}
— and so on...

10



Properties of s/key

e Just as with any hashed password
database, Alice must store her secret on
the server securely (best if physically at
server’s console)

e Alice must choose total number of logins
at time of storing secret

e When logins all "used”, must store new
secret on server securely again

11



Secrecy through Symmetric Encryption

e Two functions: E() encrypts, D() decrypts
e Parties share secret key K

e For message M:
—E(K, M) > C
-D(K,C) > M
e M is plaintext; C is ciphertext

e Goal: attacker cannot derive M from C
without K

12



Idealized Symmetric Encryption:
One-Time Pad

e Secretly share a truly random bit string P
at sender and receiver

e Define @ as bit-wise XOR
e C=EM)=MODP
e M=D(C)=CO®P

e Use bits of P only once; never use them
again!

13



Stream Ciphers:
Pseudorandom Pads

Generate pseudorandom bit sequence (stream)
at sender and receiver from short key

Encrypt and decrypt by XOR'ing message with
sequence, as with one-time pad

Most widely used stream cipher: RC4

Again, never, ever re-use bits from
pseudorandom sequence!

What's wrong with reusing the stream?

— Alice - Server: ¢; = E(s, "Visa card number”)

— Server - Alice: ¢, = E(s, “Transaction confirmed”)
— Suppose Eve hears both messages

— Eve can compute: _ _
m = c;® C,@ ' Transaction confirmed”

14



Symmetric Encryption: Block Ciphers

e Divide plaintext into fixed-size blocks
(typically 64 or 128 bits)

e Block cipher maps each plaintext block to
same-length ciphertext block

e Best today to use AES (others include
Blowfish, DES, ...)

e Of course, message of arbitrary length;
how to encrypt message of more than one
block?

15



Using Block Ciphers: ECB Mode

e Electronic Code Book method

e Divide message M into blocks of cipher’s
block size

e Simply encrypt each block individually
using the cipher

e Send each encrypted block to receiver

e Presume cipher provides secrecy, so
attacker cannot decrypt any block

e Does ECB mode provide secrecy?

16



Avoid ECB Mode!

ECB mode does not provide robust secrecy!

What if there are repeated blocks in the
plaintext? Repeated as-is in ciphertext!

What if sending sparse file, with long runs of
zeroes? Non-zero regions obvious!

WW II U-Boat example (Bob Morris):

— Each day at same time, when no news, send
encrypted message: “Nichts zu melden.”

— When there’s news, send the news at that time.
— Obvious when there’s news

— Many, many ciphertexts of same known plaintext
made available to adversary for cryptanalysis—a
worry even if encryptions of same plaintext produce
different ciphertexts!

17



Using Block Ciphers: CBC Mode

m1

Y
IV —=

Y

Enc

Y
cl

m?2 m3
Enc Enc
o
c2 c3

o Better plan: make encryptions of successive
blocks depend on one another, and initialization
vector known to receiver

18



Integrity with Symmetric Crypto:
Message Authentication Codes

How does receiver know if message modified en

route?

Message Authentication Code:

— Sender and receiver share secret key K

— On message M, v = MAC(K, M)

— Attacker cannot produce valid {M, v} without K

Append MAC to message for tamper-resistance:
— Sender sends {M, MAC(K, M)}

— M could be ciphertext, M = E(K’, m)

— Receiver of {M, v} can verify that v = MAC(K, M)

Eevx:are replay attacks—replay of prior {M, v} by
ve!

19



HMAC: A MAC Based on Cryptographic
Hash Functions

e HMAC(K, M) =
H(K®opad . H(K®ipad . M))
e Where:
— . denotes string concatenation
—opad = 64 repetitions of 0x36
— ipad = 64 repetitions of 0x5c¢

— H() is a cryptographic hash function, like
SHA-256

e Fixed-size output, even for long messages

20



Public-Key Encryption: Interface

Two keys:
— Public key: K, published for all to see
— Private (or secret) key: K1, kept secret

Encryption: E(K, M) > {M},

Decryption: D(K!, {M},) > M

Provides secrecy, like symmetric encryption:
— Can't derive M from {M}, without knowing K-}

Same public key used by all to encrypt all
messages to same recipient

— Can't derive Kt from K

21



Number Theory Background:
Modular Arithmetic Primer (1)

e Recall the "mod” operator: returns
remainder left after dividing one integer
by another, the modulus

—e.g., 15mod 6 = 3
e That is:
amodn=r
which just means
a=kn+r forsomeintegers kandr

e Notethat 0 <=r <n

22



Modular Arithmetic Primer (2)

e In modular arithmetic, constrain range of
integers to be only the residues [0, n-1], for
modulus n
-eg., (12+13)mod 24 =1
— We may also write 12 +13 =1 (mod 24)

e Modular arithmetic retains familiar properties:
commutative, associative, distributive

e Same results whether mod taken at each
arithmetic operation, or only at end, e.q.:
(@ + b) mod n = ((a mod n) + (b mod n)) mod n
(ab) mod n = (a mod n)(b mod n) mod n

23



Modular Arithmetic: Advantages

e Limits precision required: working mod n,
where n is k bits long, any single
arithmetic operation yields at most 2k bits

— ...S0 results of even seemingly expensive ops,
ike exponentiation (@) fit in same number of
Dits as original operand(s)

— Lower precision means faster arithmetic
e Some operations in modular arithmetic are
computationally very difficult:
—e.g., computing discrete logarithms:
find integer x s.t. @* =b (mod n)

24



Modular Arithmetic: Advantages

e Limits precision required: working mod n,
where n is k bits long, any single
arithmetic operation yields at most 2k bits

Cryptography leverages “difficult”
operations; want reversing encryption
without key to be computationally
intractable!

e Some operations in modular arithmetic are
computationally very difficult:
—e.g., computing discrete logarithms:
find integer x s.t. @* =b (mod n) N



Modular Arithmetic: Inverses (1)

e In real arithmetic, every integer has a
multiplicative inverse—its reciprocal—and
their product is 1
—-e.g., /x=1->x=(1/7)

e What does an inverse in modular
arithmetic (say, mod 11) look like?

7x =1 (mod11)
—that is, 7x = 11k + 1 for some x and k
—so X = 8 (where k = 5)

26



Aside: Prime Numbers

e Recall: prime number is integer > 1 that is
evenly divisible only by 1 and itself

e Two integers a and b are relatively prime
if they share no common factors but 1;
i.e., if gcd(a, b) = 1

e There are infinitely many primes

e Large primes (512 bits and longer) figure
prominently in public-key cryptography

27



Modular Arithmetic: Inverses (2)

In general, flndlng modular inverse means
finding x s.t. @™ =x (mod n)

Does modular inverse always exist?
— No! Consider 27! =x (mod 8)

In general, when a and n are relatively prime,
modular inverse x exists and is unique

When a and n not relatively prime, x doesn't
exist

When n prime, all of [1...n-1] relatively prime to
n, and have an inverse in that range

28



Modular Arithmetic: Inverses (2)

- TIA “AIAAl‘aI c:IAA:IAR MAAI llﬂl‘ :IAI IV _NVV__W_N (7 V_ W _ W W]

Algorithm to find modular inverse: extended
Euclidean Algorithm. Tractable; requires
O(log n) divisions.

e In general, when a and n are relatively prime,
modular inverse x exists and is unique

e When a and n not relatively prime, x doesn't
exist

e When n prime, all of [1...n-1] relatively prime to
n, and have an inverse in that range

29



Euler’s Phi Function: Efficient Modular
Inverses on Relative Primes

¢(n) = number of integers < n that are
relatively prime to n

If n prime, ¢(n) = n-1

If n=pqg, where p and q prime:

¢(n) = (p-1)(9-1)

If a and n relatively prime, Euler’s generalization
of Fermat’s little theorem:

a®mMmodn =1
and thus, to find inverse x s.t. X = a1 mod n:
X = a®M-1 mod n

30



RSA Algorithm (1)

e [Rivest, Shamir, Adleman, 1978]

e Recall that public-key cryptosystems use
two keys per user:
— K, the public key, made available to all
— K1, the private key, kept secret by user

31



RSA Algorithm (2)

e Choose two random, large primes, p and
g, of equal length, and compute n=pqg

e Randomly choose encryption key g, s.t. e
and (p-1)(g-1) are relatively prime

e Use extended Euclidean algorithm to
compute d, s.t. d = el mod ((p-1)(g-1))

e Public key: K = (e, n)

e Private key: K1 =d

e Discard p and g

32



RSA Algorithm (3)

e Encryption:

— Divide message M into blocks m;, each shorter
than n

— Compute ciphertext blocks ¢ with:
¢ = memodn
e Decryption

— Recover plaintext blocks m; with:
m; = ¢ mod n

33



Why Does RSA Decryption Recover
Original Plaintext?

Observe that ¢4 = (mg&)d = med

Note thated=1 (mod (p-1)(g-1))

because e and d are inverses mod (p-1)(g-1)
So:

ed=1 (mod (p-1)), and thus ed = k(p-1)+1

ed=1 (mod (g-1)), and thus ed = h(g-1)+1
Consider case where m, and p are relatively prime:

mP™" =1 (mod p)by Euler’s generalization of Fermat’s
little theorem

- s0o m® =m®Y*" =m(m®) =m, (mod p)

And case where m, a multiple of ok
m*¥=0*=0=m (mod P)

Thus in all cases, m* =m. (mod p)

34



Why Does RSA Decryption Recover
Original Plaintext? (2)

e Similarly, m* =m. (mod q)
e Now:

m® -m, =0 (mod p)

m® -m,=0 (mod q)

e Because p, g both prime and distinct:
m -m; =0 (mod (pq))

e So ¢ =m® =m, (mod n)

35



