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NFS Is Relevant 

•  Original paper from 1985 
•  Very successful, still widely used today 
•  Early result; much subsequent research in 

networked filesystems “fixing 
shortcomings of NFS” 

•  NFS is a great substrate for cool 
distributed systems NCS projects! 
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Why Build NFS? 

•  Why not just store your files on local disk? 
•  Sharing data: many users reading/writing 

same files (e.g., code repository), but 
running on separate machines 

•  Manageability: ease of backing up one 
server 

•  Disks may be expensive (true when NFS 
built; no longer true) 

•  Displays may be expensive (true when 
NFS built; no longer true) 
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Goals for NFS 

•  Work with existing, unmodified apps: 
– Same semantics as local UNIX filesystem 

•  Easily deployed 
– Easy to add to existing UNIX systems 

•  Compatible with non-UNIX OSes 
– Wire protocol cannot be too UNIX-specific 

•  Efficient “enough” 
– Needn’t offer same performance as local UNIX 

filesystem 
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Goals for NFS 

•  Work with existing, unmodified apps: 
– Same semantics as local UNIX filesystem 

•  Easily deployed 
– Easy to add to existing UNIX systems 

•  Compatible with non-UNIX OSes 
– Wire protocol cannot be too UNIX-specific 

•  Efficient “enough” 
– Needn’t offer same performance as local UNIX 

filesystem 

Ambitious, conflicting goals! 
Does NFS achieve them all fully? 
Hint: Recall “New Jersey” approach 
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NFS Architecture 

Server (w/disk) 
Clients LAN 
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NFS Architecture 
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Clients LAN App1 App2 
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syscalls 
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NFS Architecture 
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Simple Example: Reading a File 

•  What RPCs would we expect for: 
fd = open(“f”, 0); 
read(fd, buf, 8192); 
close(fd); 
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Simple Example:  
NFS RPCs for Reading a File 

•  Where are RPCs for close()? 
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File Handle: Function and Contents 

•  32-byte name, opaque to client 
•  Identifies object on remote server 
•  Must be included in all NFS RPCs 
•  File handle contains: 

–  filesystem ID 
–  i-number (essentially, physical block ID on 

disk) 
– generation number 
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Generation Number: Motivation 

•  Client 1 opens file 
•  Client 2 opens same file 
•  Client 1 deletes the file, creates new one 
•  UNIX local filesystem semantics: 

– Client 2 (App 2) sees old file 

•  In NFS, suppose server re-uses i-node 
– Same i-number for new file as old 
– RPCs from client 2 refer to new file’s i-number 
– Client 2 sees new file! 
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Generation Number: Solution 

•  Each time server frees i-node, increments 
its generation number 
– Client 2’s RPCs now use old file handle 
– Server can distinguish requests for old vs. 

new file 
•  Semantics still not same as local UNIX fs! 

– Apps 1 and 2 sharing local fs: client 2 will see 
old file 

– Clients 1 and 2 on different workstations 
sharing NFS fs: client 2 gets error “stale file 
handle” 
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Generation Number: Solution 

•  Each time server frees i-node, increments 
its generation number 
– Client 2’s RPCs now use old file handle 
– Server can distinguish requests for old vs. 

new file 
•  Semantics still not same as local UNIX fs! 

– Apps 1 and 2 sharing local fs: client 2 will see 
old file 

– Clients 1 and 2 on different workstations 
sharing NFS fs: client 2 gets error “stale file 
handle” 

Trade precise UNIX fs semantics for 
simplicity 
New Jersey approach… 
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Why i-numbers, not Filenames? 

•  Local UNIX fs: client 1 reads dir2/f 
•  NFS with pathnames: client 1 reads dir1/f 
•  Concurrent access by clients can change object 

referred to by filename 
–  Why not a problem in local UNIX fs? 

•  i-number refers to actual object, not filename 
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Where Does Client Learn File Handles? 

•  Before READ, client obtains file handle 
using LOOKUP or CREATE 

•  Client stores returned file handle in vnode 
•  Client’s file descriptor refers to vnode 
•  Where does client get very first file 

handle? 
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NFS Implementation Layering 

•  Why not just send syscalls over wire? 
•  UNIX semantics defined in terms of files, not just 

filenames: file’s identity is i-number on disk 
•  Even after rename, all these refer to same object as 

before: 
–  File descriptor 
–  Home directory 
–  Cache contents 
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NFS Implementation Layering 

•  Why not just send syscalls over wire? 
•  UNIX semantics defined in terms of files, not just 

filenames: file’s identity is i-number on disk 
•  Even after rename, all these refer to same object as 

before: 
–  File descriptor 
–  Home directory 
–  Cache contents 

vnode’s purpose: remember file handles! 
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Example: Creating a File over NFS 

•  Suppose client does: 
fd = creat(“d/f”, 0666); 
write(fd, “foo”, 3); 
close(fd); 

•  RPCs sent by client: 
– newfh = LOOKUP (fh, “d”) 
–  filefh = CREATE (newfh, “f”, 0666) 
– WRITE (filefh, 0, 3, “foo”) 
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Server Crashes and Robustness 

•  Suppose server crashes and reboots 
•  Will client requests still work? 

– Will client’s file handles still make sense? 
– Yes! File handle is disk address of i-node 

•  What if server crashes just after client 
sends an RPC? 
– Before server replies: client doesn’t get reply, 

retries 
•  What if server crashes just after replying 

to WRITE RPC? 
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WRITE RPCs and Crash Robustness 

•  What must server do to ensure correct 
behavior when crash after WRITE from 
client? 

•  Client’s data safe on disk 
•  i-node with new block number and new 

length safe on disk 
•  Indirect block safe on disk 
•  Three writes, three seeks: 45 ms 
•  22 WRITEs/s, so 180 KB/s 
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WRITEs and Throughput 

•  Design for higher write throughput: 
– Client writes entire file sequentially at 

Ethernet speed (few MB/s) 
– Update inode, &c. afterwards 

•  Why doesn’t NFS use this approach? 
– What happens if server crashes and reboots? 
– Does client believe write completed? 

•  Improved in NFSv3: WRITEs async, 
COMMIT on close() 
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Client Caches in NFS 

•  Server caches disk blocks 
•  Client caches file content blocks, some 

clean, some dirty 
•  Client caches file attributes 
•  Client caches name-to-file-handle 

mappings 
•  Client caches directory contents 
•  General concern: what if client A caches 

data, but client B changes it? 
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Multi-Client Consistency 

•  Real-world examples of data cached on 
one host, changed on another: 
– Save in emacs on one host, “make” on other 

host 
– “make” on one host, run program on other 

host 

•  (No problem if users all run on one 
workstation, or don’t share files) 



 
25 

Consistency Protocol: First Try 

•  On every read(), client asks server 
whether file has changed 
–  if not, use cached data for file 
–  if so, issue READ RPCs to get fresh data from 

server 
•  Is this protocol sufficient to make each 

read() see latest write()? 
•  What’s effect on performance? 
•  Do we need such strong consistency? 
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Compromise: 
Close-to-Open Consistency 

•  Implemented by most NFS clients 
•  Contract: 

–  if client A write()s a file, then close()s it, 
–  then client B open()s the file, and read()s it, 
– client B’s reads will reflect client A’s writes 

•  Benefit: clients need only contact server 
during open() and close()—not on every 
read() and write() 
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Compromise: 
Close-to-Open Consistency 
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Compromise: 
Close-to-Open Consistency 

Fixes “emacs save, then make” example… 
…so long as user waits until emacs says it’s 
done saving file! 
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Close-to-Open Implementation 

•  FreeBSD UNIX client (not part of protocol spec): 
–  Client keeps file mtime and size for each cached file 

block 
–  close() starts WRITEs for all file’s dirty blocks 
–  close() waits for all of server’s replies to those 

WRITEs 
–  open() always sends GETATTR to check file’s mtime 

and size, caches file attributes 
–  read() uses cached blocks only if mtime/length have 

not changed 
–  client checks cached directory contents with GETATTR 

and ctime 
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Name Caching in Practice 

•  Name-to-file-handle cache not always 
checked for consistency on each LOOKUP 
–  If file deleted, may get “stale file handle” 

error from server 
–  If file renamed and new file created with 

same name, may even get wrong file’s 
contents 
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NFS: Secure? 

•  What prevents unauthorized users from 
issuing RPCs to an NFS server? 
– e.g., remove files, overwrite data, &c. 

•  What prevents unauthorized users from 
forging NFS replies to an NFS client? 
– e.g., return data other than on real server 
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NFS: Secure? 

•  What prevents unauthorized users from 
issuing RPCs to an NFS server? 
– e.g., remove files, overwrite data, &c. 

•  What prevents unauthorized users from 
forging NFS replies to an NFS client? 
– e.g., return data other than on real server 

IP-address-based authentication of mount 
requests weak at best; no auth of server to 
client 
Security not a first-order goal in original NFS 
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Limitations of NFS 

•  Security: what if untrusted users can be 
root on client machines? 

•  Scalability: how many clients can share 
one server? 
– Writes always go through to server 
– Some writes are to “private,” unshared files 

that are deleted soon after creation 
•  Can you run NFS on a large, complex 

network? 
– Effects of latency? Packet loss? Bottlenecks? 
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•  Security: what if untrusted users can be 
root on client machines? 

•  Scalability: how many clients can share 
one server? 
– Writes always go through to server 
– Some writes are to “private,” unshared files 

that are deleted soon after creation 
•  Can you run NFS on a large, complex 

network? 
– Effects of latency? Packet loss? Bottlenecks? 

Despite its limitations, NFS a huge success: 
Simple enough to build for many OSes 
Correct enough and performs well enough to 
be practically useful in deployment 


