
Network File System (NFS)

Brad Karp
UCL Computer Science

CS GZ03 / M030
5th October 2012

2

NFS Is Relevant

•  Original paper from 1985
•  Very successful, still widely used today
•  Early result; much subsequent research in

networked filesystems “fixing
shortcomings of NFS”

•  NFS is a great substrate for cool
distributed systems NCS projects!

3

Why Build NFS?

•  Why not just store your files on local disk?
•  Sharing data: many users reading/writing

same files (e.g., code repository), but
running on separate machines

•  Manageability: ease of backing up one
server

•  Disks may be expensive (true when NFS
built; no longer true)

•  Displays may be expensive (true when
NFS built; no longer true)

4

Goals for NFS

•  Work with existing, unmodified apps:
– Same semantics as local UNIX filesystem

•  Easily deployed
– Easy to add to existing UNIX systems

•  Compatible with non-UNIX OSes
– Wire protocol cannot be too UNIX-specific

•  Efficient “enough”
– Needn’t offer same performance as local UNIX

filesystem

5

Goals for NFS

•  Work with existing, unmodified apps:
– Same semantics as local UNIX filesystem

•  Easily deployed
– Easy to add to existing UNIX systems

•  Compatible with non-UNIX OSes
– Wire protocol cannot be too UNIX-specific

•  Efficient “enough”
– Needn’t offer same performance as local UNIX

filesystem

Ambitious, conflicting goals!
Does NFS achieve them all fully?
Hint: Recall “New Jersey” approach

6

NFS Architecture

Server (w/disk)
Clients LAN

7

NFS Architecture

Server (w/disk)
Clients LAN App1 App2

User
Kernel

Filesystem

syscalls

8

NFS Architecture

Server (w/disk)
Clients LAN App1 App2

User
Kernel

Filesystem

syscalls

RPCs

9

Simple Example: Reading a File

•  What RPCs would we expect for:
fd = open(“f”, 0);
read(fd, buf, 8192);
close(fd);

10

Simple Example:
NFS RPCs for Reading a File

•  Where are RPCs for close()?

11

File Handle: Function and Contents

•  32-byte name, opaque to client
•  Identifies object on remote server
•  Must be included in all NFS RPCs
•  File handle contains:

–  filesystem ID
–  i-number (essentially, physical block ID on

disk)
– generation number

12

Generation Number: Motivation

•  Client 1 opens file
•  Client 2 opens same file
•  Client 1 deletes the file, creates new one
•  UNIX local filesystem semantics:

– Client 2 (App 2) sees old file

•  In NFS, suppose server re-uses i-node
– Same i-number for new file as old
– RPCs from client 2 refer to new file’s i-number
– Client 2 sees new file!

13

Generation Number: Solution

•  Each time server frees i-node, increments
its generation number
– Client 2’s RPCs now use old file handle
– Server can distinguish requests for old vs.

new file
•  Semantics still not same as local UNIX fs!

– Apps 1 and 2 sharing local fs: client 2 will see
old file

– Clients 1 and 2 on different workstations
sharing NFS fs: client 2 gets error “stale file
handle”

14

Generation Number: Solution

•  Each time server frees i-node, increments
its generation number
– Client 2’s RPCs now use old file handle
– Server can distinguish requests for old vs.

new file
•  Semantics still not same as local UNIX fs!

– Apps 1 and 2 sharing local fs: client 2 will see
old file

– Clients 1 and 2 on different workstations
sharing NFS fs: client 2 gets error “stale file
handle”

Trade precise UNIX fs semantics for
simplicity
New Jersey approach…

15

Why i-numbers, not Filenames?

•  Local UNIX fs: client 1 reads dir2/f
•  NFS with pathnames: client 1 reads dir1/f
•  Concurrent access by clients can change object

referred to by filename
–  Why not a problem in local UNIX fs?

•  i-number refers to actual object, not filename

16

Where Does Client Learn File Handles?

•  Before READ, client obtains file handle
using LOOKUP or CREATE

•  Client stores returned file handle in vnode
•  Client’s file descriptor refers to vnode
•  Where does client get very first file

handle?

17

NFS Implementation Layering

•  Why not just send syscalls over wire?
•  UNIX semantics defined in terms of files, not just

filenames: file’s identity is i-number on disk
•  Even after rename, all these refer to same object as

before:
–  File descriptor
–  Home directory
–  Cache contents

18

NFS Implementation Layering

•  Why not just send syscalls over wire?
•  UNIX semantics defined in terms of files, not just

filenames: file’s identity is i-number on disk
•  Even after rename, all these refer to same object as

before:
–  File descriptor
–  Home directory
–  Cache contents

vnode’s purpose: remember file handles!

19

Example: Creating a File over NFS

•  Suppose client does:
fd = creat(“d/f”, 0666);
write(fd, “foo”, 3);
close(fd);

•  RPCs sent by client:
– newfh = LOOKUP (fh, “d”)
–  filefh = CREATE (newfh, “f”, 0666)
– WRITE (filefh, 0, 3, “foo”)

20

Server Crashes and Robustness

•  Suppose server crashes and reboots
•  Will client requests still work?

– Will client’s file handles still make sense?
– Yes! File handle is disk address of i-node

•  What if server crashes just after client
sends an RPC?
– Before server replies: client doesn’t get reply,

retries
•  What if server crashes just after replying

to WRITE RPC?

21

WRITE RPCs and Crash Robustness

•  What must server do to ensure correct
behavior when crash after WRITE from
client?

•  Client’s data safe on disk
•  i-node with new block number and new

length safe on disk
•  Indirect block safe on disk
•  Three writes, three seeks: 45 ms
•  22 WRITEs/s, so 180 KB/s

22

WRITEs and Throughput

•  Design for higher write throughput:
– Client writes entire file sequentially at

Ethernet speed (few MB/s)
– Update inode, &c. afterwards

•  Why doesn’t NFS use this approach?
– What happens if server crashes and reboots?
– Does client believe write completed?

•  Improved in NFSv3: WRITEs async,
COMMIT on close()

23

Client Caches in NFS

•  Server caches disk blocks
•  Client caches file content blocks, some

clean, some dirty
•  Client caches file attributes
•  Client caches name-to-file-handle

mappings
•  Client caches directory contents
•  General concern: what if client A caches

data, but client B changes it?

24

Multi-Client Consistency

•  Real-world examples of data cached on
one host, changed on another:
– Save in emacs on one host, “make” on other

host
– “make” on one host, run program on other

host

•  (No problem if users all run on one
workstation, or don’t share files)

25

Consistency Protocol: First Try

•  On every read(), client asks server
whether file has changed
–  if not, use cached data for file
–  if so, issue READ RPCs to get fresh data from

server
•  Is this protocol sufficient to make each

read() see latest write()?
•  What’s effect on performance?
•  Do we need such strong consistency?

26

Compromise:
Close-to-Open Consistency

•  Implemented by most NFS clients
•  Contract:

–  if client A write()s a file, then close()s it,
–  then client B open()s the file, and read()s it,
– client B’s reads will reflect client A’s writes

•  Benefit: clients need only contact server
during open() and close()—not on every
read() and write()

27

Compromise:
Close-to-Open Consistency

28

Compromise:
Close-to-Open Consistency

Fixes “emacs save, then make” example…
…so long as user waits until emacs says it’s
done saving file!

29

Close-to-Open Implementation

•  FreeBSD UNIX client (not part of protocol spec):
–  Client keeps file mtime and size for each cached file

block
–  close() starts WRITEs for all file’s dirty blocks
–  close() waits for all of server’s replies to those

WRITEs
–  open() always sends GETATTR to check file’s mtime

and size, caches file attributes
–  read() uses cached blocks only if mtime/length have

not changed
–  client checks cached directory contents with GETATTR

and ctime

30

Name Caching in Practice

•  Name-to-file-handle cache not always
checked for consistency on each LOOKUP
–  If file deleted, may get “stale file handle”

error from server
–  If file renamed and new file created with

same name, may even get wrong file’s
contents

31

NFS: Secure?

•  What prevents unauthorized users from
issuing RPCs to an NFS server?
– e.g., remove files, overwrite data, &c.

•  What prevents unauthorized users from
forging NFS replies to an NFS client?
– e.g., return data other than on real server

32

NFS: Secure?

•  What prevents unauthorized users from
issuing RPCs to an NFS server?
– e.g., remove files, overwrite data, &c.

•  What prevents unauthorized users from
forging NFS replies to an NFS client?
– e.g., return data other than on real server

IP-address-based authentication of mount
requests weak at best; no auth of server to
client
Security not a first-order goal in original NFS

33

Limitations of NFS

•  Security: what if untrusted users can be
root on client machines?

•  Scalability: how many clients can share
one server?
– Writes always go through to server
– Some writes are to “private,” unshared files

that are deleted soon after creation
•  Can you run NFS on a large, complex

network?
– Effects of latency? Packet loss? Bottlenecks?

34

Limitations of NFS

•  Security: what if untrusted users can be
root on client machines?

•  Scalability: how many clients can share
one server?
– Writes always go through to server
– Some writes are to “private,” unshared files

that are deleted soon after creation
•  Can you run NFS on a large, complex

network?
– Effects of latency? Packet loss? Bottlenecks?

Despite its limitations, NFS a huge success:
Simple enough to build for many OSes
Correct enough and performs well enough to
be practically useful in deployment

