
Least-Privilege Isolation:
The OKWS Web Server

Brad Karp
UCL Computer Science

CS GZ03 / M030
12th December 2012

2

Can We Prevent All Exploits?

•  Many varieties of exploits
–  Stack smashing, format strings, heap smashing,

return-to-libc
•  As many proposed defenses

–  W X, ASLR, TaintCheck, StackGuard, …
•  Exploit-specific defenses help, but ever-more

vulnerabilities, and adversaries creative
•  Not just a problem with C; consider SQL

injection in a Python script:
q = “SELECT orders FROM accounts WHERE name = ” +
name

db.execute(q)

•  Programmers make errors

3

Can We Prevent All Exploits?

•  Many varieties of exploits
–  Stack smashing, format strings, heap smashing,

return-to-libc
•  As many proposed defenses

–  W X, ASLR, TaintCheck, StackGuard, …
•  Exploit-specific defenses help, but ever-more

vulnerabilities, and adversaries creative
•  Not just a problem with C; consider SQL

injection in a Python script:
q = “SELECT orders FROM accounts WHERE name = ” +
name

db.execute(q)

•  Programmers make errors

If vulnerabilities and errors are here to stay,
how can we limit the harm attackers can do
when they exploit a server?

4

Problem: Sharing Services, But
Isolating Data

•  Servers often hold sensitive data
–  e.g., amazon.com user’s credit card number

•  Single server shared by distinct users, who often
shouldn’t see one another’s data
–  e.g., different amazon.com shoppers

•  Subsystems on single server must cooperate
–  e.g., amazon.com web interface and back-end order

database
•  Goal: prevent users from obtaining/modifying

data other than their own
–  I shouldn’t be able to retrieve your order (and credit

card number), even if I exploit amazon’s web server

5

Approach: Compartmentalization

•  Give each subsystem minimal access to
system data and resources to do its job
–  If subsystem exploited, at least minimize data

it can read or modify

•  Define narrow interfaces between
subsystems, that allow only exact
operations required for application

•  Design assuming exploit may occur,
especially in subsystems closest to users

6

Idea: Principle of Least Privilege
(PoLP)

•  Each subsystem should only have access
to read/modify data needed for its job

•  Cannot be enforced within subsystem—
must be enforced externally (i.e., by OS)

•  Must decompose system into subsystems
– Must reason carefully about truly minimal set

of privileges needed by each subsystem
•  Must be able to grant privileges in fine-

grained manner
– Else privileges granted to subsystem may be

too generous…

7

Idea: Privilege Separation

•  Determine which subsystems most
exposed to attack

•  Reduce privileges of most exposed
subsystems
– e.g., amazon payment page can only insert

into order database, and order database
doesn’t have integrated web interface with
direct access to data

– e.g., ssh login daemon code that processes
network input shouldn’t run as root

8

OKWS: A PoLP Web Server on UNIX

•  Before OKWS:
–  Apache web server process monolithic; all code runs

as same user
–  Exploit Apache, and all data associated with web

service becomes accessible

•  How might we separate a web server into
subsystems, to apply PoLP?

•  Split into multiple processes, each with different,
minimal privileges, running as different user IDs
–  Use UNIX isolation mechanisms to prevent

subsystems from reading/modifying each other’s data

9

UNIX Tools for PoLP: chroot()

•  chroot() system call: set process’s notion of file
system root; thereafter, can’t change directories
above that point

•  So can do:
chdir(“/usr/local/alone”);
chroot(“/usr/local/alone”);

setuid(61100); (unprivileged user ID)
•  Now process has no access to any of filesystem

but what’s in tree rooted at /usr/local/alone
–  No access to the many UNIX setuid-root programs, or

to sensitive data elsewhere on disk
–  But must a priori set up all system files needed by

process in directory, e.g., shared libraries, &c.

10

UNIX Tools for PoLP:
File Descriptor Passing

•  Initially, parent server process privileged
•  Want to run subsystem in child process, but with

minimal privileges (e.g., child chroot()ed)
•  Idea: privileged parent opens files needed by

unprivileged child, passes child open file
descriptors to these files when it fork()s child
–  Child can read these files, even if it can’t open them

(i.e., because of chroot())
•  Can also pass file descriptors dynamically (after

fork()) with sendmsg()
–  Process that faces network can accept connection,

pass socket for that connection to another process

11

UNIX Tools for PoLP:
File Descriptor Passing

•  Initially, parent server process privileged
•  Want to run subsystem in child process, but with

minimal privileges (e.g., child chroot()ed)
•  Idea: privileged parent opens files needed by

unprivileged child, passes child open file
descriptors to these files when it fork()s child
–  Child can read these files, even if it can’t open them

(i.e., because of chroot())
•  Can also pass file descriptors dynamically (after

fork()) with sendmsg()
–  Process that faces network can accept connection,

pass socket for that connection to another process

Powerful primitive: means can run subsystem
with minimal privilege (e.g., can’t bind to privileged
port 80), but grant it specific network
connections or specific files

12

OKWS System Design

•  okd process parses
user input, holds no
sensitive data

•  svci process parses
user input for one
service; runs in
chroot()ed “jail”

•  database proxy
process only accepts
authenticated requests
for subset of narrow
RPC interface; can
read sensitive data

13

Analyzing Privilege-Separated Designs

•  What data does subsystem have access
to, with what permissions?

•  How complex is the code in a subsystem
(e.g., parsing notoriously hard to get
right)?

•  What input does a subsystem receive?
– Less structured à more worrying
– e.g., okld runs as root; should we worry about

exploits of it?

14

Strength of Isolation vs. Performance

•  One process per user gives strictest isolation, but means
many, many processes à low performance

•  OKWS uses one process per service for performance
reasons; so compromised service may reveal one user’s
data to another

“Strict” Model OKWS Model

•  si: services
•  uj: users
•  pk: processes
•  ti,j: state for user j

in service i

15

OKWS Summary

•  Shows that PoLP and privilege separation
hold real promise for limiting harm exploits
can do

•  Programming model for services requires
new style of programming
– Can’t use the file system; services chroot()ed
– Must define narrow, per-service interfaces to

database
– Must communicate explicitly using RPC

between service and database

