
Paxos: Agreement for Replicated 
State Machines 

Brad Karp 
UCL Computer Science 

CS GZ03 / M030 
28th October, 2011 



 
2 

Review: Types of Distributedness 

•  NFS: distributed to share data across 
clients through filesystem interface 

•  Ivy: distributed to provide illusion of 
seamless shared memory across clients 

•  2PC: distributed because different nodes 
have different functions (e.g., Bank A, 
Bank B) 

•  What about distributedness to make 
system more available? 



 
3 

Centralization: Single Points of Failure 

•  Consider what happens when nodes fail: 
– NFS server? 
– Bank A? 
– CPU that owns a page in Ivy? 

•  In all these systems, there is single node 
with “authoritative” copy of some data 

•  Single point of failure: kill one node, 
clients may grind to halt 

•  How can we do better? 



 
4 

Replication 

•  Replicate data on several servers 
•  If server(s) fail, hopefully others still 

running; data still available, clients can still 
make progress 

•  Consistency? 
–  Informally speaking, all replicas should hold 

identical copies of data 
– So as users’ requests modify data, must 

somehow keep all data identical on all replicas 



 
5 

2PC vs. Replication 

•  2PC works well if different nodes play different 
roles (e.g., Bank A, Bank B) 

•  2PC isn’t perfect 
–  Must wait for all sites and TC to be up 
–  Must know if each site voted yes or no 
–  TC must be up to decide 
–  Doesn’t tolerate faults well; must wait for repair 

•  Can clients make progress when some nodes 
unreachable? 
–  Yes! When data replicated. 



 
6 

State Machine Replication 

•  Any server essentially a state machine 
– Disk, RAM, CPU registers are state 
–  Instructions transition among states 
– User requests cause instructions to be 

executed, so cause transitions among states 

•  Replicate state machine on multiple hosts 
– Every replica must see same operations in 

same order 
–  If deterministic, replicas end in same state 



 
7 

Ensuring All Replicas See 
Operations in Same Order 

•  Nominate one “special” server: primary 
•  Call all other servers backups 
•  Clients send all operations to current 

primary 
•  Primary’s role: 

– Chooses order for clients’ operations 
– Sends clients’ operations to backups 
– Replies to clients 



 
8 

Ensuring All Replicas See 
Operations in Same Order 

•  Nominate one “special” server: primary 
•  Call all other servers backups 
•  Clients send all operations to current 

primary 
•  Primary’s role: 

– Chooses order for clients’ operations 
– Sends clients’ operations to backups 
– Replies to clients 

Didn’t we say the whole point was availability, and 
fault-tolerance? 
What if primary fails? 



 
9 

Primary Failure 

•  Last operation received by primary may not be 
complete 

•  Need to pick new primary 
•  Can’t allow two simultaneous primaries! (Why?) 
•  Define: lowest-numbered live server is primary 

–  After failure, everyone pings everyone 
–  Does everyone now know who new primary is? 

•  Maybe not: 
–  Pings may be lost: two primaries 
–  Pings may be delayed: two primaries 
–  Network partition: two primaries 



 
10 

Idea: Majority Consensus 

•  Require a majority of nodes to agree on 
primary 

•  At most one network partition can contain 
majority 

•  If pings lost, and thus two potential 
primaries, majorities must overlap 
– Node(s) in overlap can see both potential 

primaries, raise alarm about non-agreement! 



 
11 

Technique: View Change Algorithm 

•  Entire system goes through sequence of 
views 

•  View: {view #, set of participant nodes} 
•  View change algorithm must ensure 

agreement on unique successor for each 
view 

•  Participant set within view allows all nodes 
to agree on primary 
– Same rule: lowest-numbered ID in set is 

primary 



 
12 

Technique: View Change Algorithm 

•  Entire system goes through sequence of 
views 

•  View: {view #, set of participant nodes} 
•  View change algorithm must ensure 

agreement on unique successor for each 
view 

•  Participant set within view allows all nodes 
to agree on primary 
– Same rule: lowest-numbered ID in set is 

primary 

If two nodes agree on view, they will agree 
on primary 



 
13 

View Change Requires 
Fault-Tolerant Agreement 

•  Envision view as opaque value 
•  Want all nodes to agree on same value 

(i.e., same view) 
•  At most one value may be chosen 
•  Want to agree despite lost messages and 

crashed nodes 
•  Can’t guarantee to agree! 

– Can guarantee not to agree on different 
values! 

–  i.e., guarantee safety, but not liveness 



 
14 

Paxos: 
Fault-Tolerant Agreement Protocol 

•  Protocol eventually succeeds provided 
– Majority of participants reachable 
– Participants know how to generate value to 

agree on 
•  i.e., Paxos doesn’t determine the value nodes try 

to agree on—value is an opaque input to Paxos 

•  Only widely used algorithm for fault-
tolerant agreement in state machine 
replication 



 
15 

Review: State Machine Replication, 
Primary-Backup, Paxos 

•  How did we get here? 
•  Want to replicate a system for availability 
•  View system as state machine; replicate the 

state machine 
•  Ensure all replicas see same ops in same order 
•  Primary orders requests, forwards to replicas 
•  All nodes must agree on primary 
•  All nodes must agree on view 

–  Participant with lowest address in view is primary 
•  Paxos guaranteed to complete only when all 

nodes agree on input (in this case, input is view) 



 
16 

Overview of Paxos 

•  One (or more) nodes decide to be leader 
•  Leader chooses proposed value to agree on 

–  (In our case, value is view: {view #, participant set}) 

•  Leader contacts Paxos participants, tries to 
assemble majority 
–  Participants can be fixed set of nodes (configured) 
–  Or can be all nodes in old view (including unreachable 

nodes) 

•  If a majority respond, successful agreement 



 
17 

Agreement is Hard! 

•  What if two nodes decide to be leader? 
•  What if network partition leads to two 

leaders? 
•  What if leader crashes after persuading 

only some nodes? 
•  What if leader got majority, then failed, 

without announcing result? 
– Or announced result to only a few nodes? 
– New leader might choose different 

value, despite previous agreement 



 
18 

Paxos: Structure 

•  Three phases in algorithm 
•  May need to restart if nodes fail or 

timeouts waiting for replies 
•  State in each node running Paxos, per-

value (view): 
– na: greatest n accepted by node (init: -1) 
– va: value received together with na (init: nil) 
– nh: greatest n seen in Q1 message (init: -1) 
– done: leader says agreement reached; can 

use new value (i.e., start new view) (init: 0) 



 
19 

Paxos: Phase 1 

A node (maybe more than one) decides to be 
leader, then it 
picks proposal number, n 

must be unique, good if higher than any 
known proposal number 

use last known proposal number + 1, 
append node’s own ID 

sends Q1(n) message to all nodes (including 
self) 

if node receives Q1(n) and n > nh 
nh = n 
send reply R1(na, va) message 



 
20 

Paxos: Phase 2 

if leader receives R1 messages from majority of 
nodes (including self) 
if any R1(n, v) contained a value (v) 

v = value sent with highest n 
else leader gets to choose a value (v) 

v = {old view# + 1, set of pingable nodes} 
send Q2(n, v) message to all responders 

if node receives Q2(n, v) and n >= nh 
nh = na = n 
va = v 
send reply R2() message 



 
21 

Paxos: Phase 3 

if leader receives R2() messages from 
majority of protocol participants 
send Q3() message to all participants 

if node receives Q3() 
done = true 
agreement reached; agreed-on value is va 

(primary is lowest-numbered node in 
participant list within va) 



 
22 

Paxos: Timeouts 

•  All nodes wait a maximum period 
(timeout) for messages they expect 

•  Upon timeout, a node declares itself a 
leader and initiates a new Phase 1 of 
algorithm 



 
23 

Paxos with One Leader, No Failures: 
Phase 1 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 



 
24 

Paxos with One Leader, No Failures: 
Phase 1 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

n = 11 



 
25 

Paxos with One Leader, No Failures: 
Phase 1 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

n = 11 

“Q1(11)” 



 
26 

Paxos with One Leader, No Failures: 
Phase 1 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

-1 

nil 

-1 

F 

n = 11 

“Q1(11)” 



 
27 

Paxos with One Leader, No Failures: 
Phase 1 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 



 
28 

Paxos with One Leader, No Failures: 
Phase 1 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

“R1(-1, nil)” 



 
29 

Paxos with One Leader, No Failures: 
Phase 2 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

R1 from 
majority! 
all v’s nil 



 
30 

Paxos with One Leader, No Failures: 
Phase 2 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

11 

F 

-1 

{1, {0, …, 4}} 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 



 
31 

Paxos with One Leader, No Failures: 
Phase 2 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

11 

F 

-1 

{1, {0, …, 4}} 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

“Q2(11, 
{1, {0, …, 4}})” 



 
32 

Paxos with One Leader, No Failures: 
Phase 2 

0 1 2 3 4 

na 

va 

nh 

done 

-1 

nil 

11 

F 

-1 

{1, {0, …, 4}} 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

-1 

nil 

11 

F 

“Q2(11, 
{1, {0, …, 4}})” 



 
33 

Paxos with One Leader, No Failures: 
Phase 2 

0 1 2 3 4 

na 

va 

nh 

done 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 



 
34 

Paxos with One Leader, No Failures: 
Phase 2 

0 1 2 3 4 

na 

va 

nh 

done 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

“R2” 



 
35 

Paxos with One Leader, No Failures: 
Phase 3 

0 1 2 3 4 

R2 from 
majority! 

na 

va 

nh 

done 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 



 
36 

Paxos with One Leader, No Failures: 
Phase 3 

0 1 2 3 4 

na 

va 

nh 

done 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

11 

{1, {0, …, 4}} 

11 

F 

“Q3” 



 
37 

Paxos with One Leader, No Failures: 
Phase 3 

0 1 2 3 4 

na 

va 

nh 

done 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 



 
38 

Paxos with One Leader, No Failures: 
Phase 3 

0 1 2 3 4 

na 

va 

nh 

done 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

11 

{1, {0, …, 4}} 

11 

T 

All nodes agree on view {1,{0, …, 4}} 
New primary: lowest ID, so node 0 



 
39 

Paxos: Number of Leaders 

•  Clearly, when no failures, no message 
losses, and one leader, Paxos reaches 
agreement 

•  How can one ensure that with high 
probability, only one leader? 
– Every node must be willing to become leader 

in case of failures 
– Every node should delay random period after 

realizing pingable nodes have changed, or 
delay own ID x some constant 



 
40 

Paxos: Ensuring Agreement 

•  When would non-agreement occur? 
– When nodes with different va receive Q3 

•  Safety goal: 
–  If Q3 could have been sent, future Q3s 

guaranteed to reach nodes with same va 



 
41 

Risk: More Than One Leader 

•  Can occur after timeout during Paxos 
algorithm, partition, lost packets 

•  Two leaders must use different n in their 
Q1()s, by construction of n 

•  Suppose two leaders proposed n = 10 and 
n = 11 



 
42 

More Than One Leader (2) 

•  Case 1: proposer of 10 didn’t receive R2()s 
from majority of participants 
– Proposer never will receive R2()s from 

majority, as no node will send R2() in reply to 
Q2(10,…) after seeing Q1(11) 

– Or proposer of 10 may be in network partition 
with minority of nodes 



 
43 

More than One Leader (3) 

•  Case 2: proposer of 10 (10) did receive R2()s 
from majority of participants 
–  Thus, 10’s originator may have sent Q3()! 
–  But 10’s majority must have seen 10’s Q2() before 

11’s Q1() 
•  Otherwise, would have ignored 10’s Q2, and no majority 

could have resulted 

–  Thus, 11 must receive R1 from at least one node that 
saw 10’s Q2 

–  Thus, 11 must be aware of 10’s value 
–  Thus, 11 would have used 10’s value, rather than 

creating one! 



 
44 

More than One Leader (3) 

•  Case 2: proposer of 10 (10) did receive R2()s 
from majority of participants 
–  Thus, 10’s originator may have sent Q3()! 
–  But 10’s majority must have seen 10’s Q2() before 

11’s Q1() 
•  Otherwise, would have ignored 10’s Q2, and no majority 

could have resulted 

–  Thus, 11 must receive R1 from at least one node that 
saw 10’s Q2 

–  Thus, 11 must be aware of 10’s value 
–  Thus, 11 would have used 10’s value, rather than 

creating one! 

Result: agreement on 10’s proposed value! 



 
45 

Risk: Leader Fails 
Before Sending Q2()s 

•  Some node will time out and become a 
leader 

•  Old leader didn’t send any Q3()s, so no 
risk of non-agreement caused by old 
leader 

•  Good, but not required, that new leader 
chooses higher n for proposal 
– Otherwise, timeout, some other leader will try 
– Eventually, will find leader who knew old n 

and will use higher n 



 
46 

Risks: Leader Failures 

•  Suppose leader fails after sending minority 
of Q2()s 
– Same as two leaders! 

•  Suppose leader fails after sending majority 
of Q2()s 
–  i.e., potentially after reaching agreement! 
– Also same as two leaders! 



 
47 

Risk: Node Fails After Receiving Q2(), 
and After Sending R2() 

•  If node doesn’t restart, possible timeout in 
Phase 3, new leader 

•  If node does restart, it must remember va 
and na on disk! 
– Leader might have failed after sending a few 

Q3()s 
– New leader must choose same value 
– This failed node may be only node in 

intersection of two majorities! 



 
48 

Paxos: Summary 

•  Original goal: replicated state machines! 
– Want to continue, even if some nodes not 

reachable 
•  After each failure, perform view change 

using Paxos agreement 
•  i.e., agree on exactly which nodes in new 

view 
•  Thus, everyone can agree on new primary 
•  No discussion here of how to render data 

consistent across replicas! 


