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Increasing Transparency: 
From RPC to Shared Memory 

•  In RPC, we’ve seen one way to split 
application across multiple nodes 
– Carefully specify interface between nodes 
– Explicitly communicate between nodes 
– Transparent to programmer? 

•  Can we hide all inter-node communication 
from programmer, and improve 
transparency? 
– Today’s topic: Distributed Shared Memory 
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Ivy: Distributed Shared Memory 

•  Supercomputer: super-expensive 100-CPU 
machine, custom-built hardware 

•  Ivy: 100 cheap PCs and a LAN (all off-the-
shelf hardware!) 

•  Both offer same easy view for 
programmer: 
–   single, shared memory, visible to all CPUs 
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Distributed Shared Memory: Problem 

•  An application has a shared address 
space; all memory locations accessible to 
all instructions 

•  Divide code for application into pieces, 
assign one piece to each of several 
computers on a LAN 

•  Each computer has own separate memory 
•  Each piece of code may want to read or 

write any part of data 
•  Where do you put the data? 
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Distributed Shared Memory: Solution 

•  Goal: create illusion that all boxes share single 
memory, accessible by all 

•  Shared memory contents divided across nodes 
–  Programmer needn’t explicitly communicate among 

nodes 
–  Pool memory of all nodes into one shared memory 

•  Performance? Correctness? 
–  Far slower to read/write across LAN than read/write 

from/to local (same host’s) memory 
–  Remember NFS: caching should help 
–  Remember NFS: caching complicates consistency! 
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Context: Parallel Computation 

•  Still need to divide program code across 
multiple CPUs 

•  Potential benefit: more total CPU power, 
so faster execution 

•  Potential risk: how will we know if 
distributed program executes correctly? 

•  To understand distributed shared memory, 
must understand what “correct” execution 
means… 
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Simple Case: Uniprocessor Correctness 

•  When you only have one processor, what 
does “correct” mean? 

•  Define “correct” separately for each 
instruction 

•  Each instruction takes machine from one 
state to another (e.g., ADD, LD, ST) 
– LD should return value of most recent ST to 

same memory address 
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Simple Case: Uniprocessor Correctness 

•  When you only have one processor, what 
does “correct” mean? 

•  Define “correct” separately for each 
instruction 

•  Each instruction takes machine from one 
state to another (e.g., ADD, LD, ST) 
– LD should return value of most recent ST to 

same memory address 

“Correct” means: 
Execution gives same result as if you ran one 
instruction at a time, waiting for each to 
complete 
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Why Define Correctness? 

•  Programmers want to be able to predict how 
CPU executes program! 
–  …to write correct program 

•  Note that modern CPUs don’t execute 
instructions one-at-a-time in program order 
–  Multiple instruction issue 
–  Out-of-order instruction issue 

•  Nevertheless, CPUs must behave such that they 
obey uniprocessor correctness! 
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Distributed Correctness: 
Naïve Shared Memory 

•  Suppose we have multiple hosts with (for 
now) naïve shared memory 
– 3 hosts, each with one CPU, connected by 

Internet 
– Each host has local copy of all memory 
– Reads local, so very fast 
– Writes sent to other hosts (and execution 

continues immediately) 

•  Is naïve shared memory correct? 
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Example 1: Mutual Exclusion 

CPU0: 
 x = 1; 
 if (y == 0) 
  critical section; 

CPU1: 
 y = 1; 
 if (x == 0) 
  critical section; 

•  Why is code correct? 
–  If CPU0 sees y == 0, CPU1 can’t have executed “y = 

1” 
–  So CPU1 will see x == 1, and can’t enter critical 

section 

Initialization: x = y = 0 on both CPUs 
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Example 1: Mutual Exclusion 

CPU0: 
 x = 1; 
 if (y == 0) 
  critical section; 

CPU1: 
 y = 1; 
 if (x == 0) 
  critical section; 

•  Why is code correct? 
–  If CPU0 sees y == 0, CPU1 can’t have executed “y = 

1” 
–  So CPU1 will see x == 1, and can’t enter critical 

section 

Initialization: x = y = 0 on both CPUs 

So CPU0 and CPU1 cannot simultaneously 
enter critical section 
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Naïve Distributed Memory: 
Incorrect for Example 1 

•  Problem A: 
– CPU0 sends “write x=1”, reads local “y == 0” 
– CPU1 reads local “x == 0” before write arrives 

•  Local memory and slow writes cause 
disagreement about read/write order! 
– CPU0 thinks its “x = 1” was before CPU1’s 

read of x 
– CPU1 thinks its read of x was before arrival of 

“write x = 1” 
•  Both CPU0 and CPU1 enter critical section! 
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Example 2: 
Data Dependencies 

CPU0: 
 v0 = f0(); 
 done0 = true; 

 

CPU1: 
 while (done0 == false) 
  ; 
 v1 = f1(v0); 
 done1 = true; 

CPU2: 
 while (done1 == false) 
  ; 
 v2 = f2(v0, v1); 
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Example 2: 
Data Dependencies 

CPU0: 
 v0 = f0(); 
 done0 = true; 

 

CPU1: 
 while (done0 == false) 
  ; 
 v1 = f1(v0); 
 done1 = true; 

CPU2: 
 while (done1 == false) 
  ; 
 v2 = f2(v0, v1); 

Intent: 
CPU2 should run f2() with 
results from CPU0 and CPU1 
Waiting for CPU1 implies 
waiting for CPU0 
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Naïve Distributed Memory: 
Incorrect for Example 2 

•  Problem B: 
– CPU0’s writes of v0 and done0 may be 

reordered by network, leaving v0 unset, but 
done0 true 

•  But even if each CPU sees each other 
CPU’s writes in issue order… 

•  Problem C: 
– CPU2 sees CPU1’s writes before CPU0’s writes 
–  i.e., CPU2 and CPU1 disagree on order of 

CPU0’s and CPU1’s writes 
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Naïve Distributed Memory: 
Incorrect for Example 2 

•  Problem B: 
– CPU0’s writes of v0 and done0 may be 

reordered by network, leaving v0 unset, but 
done0 true 

•  But even if each CPU sees each other 
CPU’s writes in issue order… 

•  Problem C: 
– CPU2 sees CPU1’s writes before CPU0’s writes 
–  i.e., CPU2 and CPU1 disagree on order of 

CPU0’s and CPU1’s writes 

Naïve distributed memory isn’t correct 
(Or we shouldn’t expect code like these 
examples to work…) 
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Distributed Correctness: 
Consistency Models 

•  How can we write correct distributed 
programs with shared storage? 

•  Need to define rules that memory system 
will follow 

•  Need to write programs with these rules in 
mind 

•  Rules are a consistency model 
•  Build memory system to obey model; 

programs that assume model then correct 
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How Do We Choose a 
Consistency Model? 

•  No such thing as “right” or “wrong” model 
– All models are artificial definitions 

•  Different models may be harder or easier 
to program for 
– Some models produce behavior that is more 

intuitive than others 
•  Different models may be harder or easier 

to implement efficiently 
– Performance vs. semantics trade-off, as with 

NFS/RPC 
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Back to Ivy: 
What’s It Good For? 

•  Suppose you’ve got 100 PCs on a LAN and 
shared memory across all of them 

•  Fast, parallel sorting program: 
Load entire array into shared memory 
Each PC processes one section of array 
On PC i: 

sort own piece of array 
done[i] = true; 
wait for all done[] to be true 
merge my piece of array with my neighbors’… 
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Partitioning Address Space: 
Fixed Approach 

•  Fixed approach: 
– First MB on host 0, 2nd on host 1, &c. 
– Send all reads and writes to “owner” of 

address 
– Each CPU read- and write-protects pages in 

address ranges held by other CPUs 
• Detect reads and writes to remote pages with VM 

hardware 

•  What if we placed pages on hosts poorly? 
•  Can’t always predict which hosts will use 

which pages 
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Partitioning Address Space: 
Dynamic, Single-Copy Approach 

•  Move the page to the reading/writing CPU 
each time it is used 

•  CPU trying to read or write must find 
current owner, then take page from it 

•  Requires mechanism to find current 
location of page 

•  What if many CPUs read same page? 
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Partitioning Address Space: 
Dynamic, Multi-Copy Approach 

•  Move page for writes, but allow read-only 
copies 

•  When CPU reads page it doesn’t have in 
its own local memory, find other CPU that 
most recently wrote to page 

•  Works if pages are read-only and shared 
or read-write by one host 

•  Bad case: write sharing 
– When does write sharing occur? 
– False sharing, too… 
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Simple Ivy: 
Centralized Manager (Section 3.1) 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

lock access owner? 

lock access owner? 

lock copy_set owner 

ptable info 

•  ptable (all CPUs) 
access: R, W, or nil 
owner: T or F 

•  info (MGR only) 
copy_set: list of 

CPUs with read-
only copies 

owner: CPU that 
can write page 
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Centralized Manager (2): 
Message Types Between CPUs 

•  RQ (read query, reader to MGR) 
•  RF (read forward, MGR to owner) 
•  RD (read data, owner to reader) 
•  RC (read confirm, reader to MGR) 
•  WQ (write query, writer to MGR) 
•  IV (invalidate, MGR to copy_set) 
•  IC (invalidate confirm, copy_set to MGR) 
•  WF (write forward, MGR to owner) 
•  WD (write data, owner to writer) 
•  WC (write confirm, writer to MGR) 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F W T 

… 

lock copy_set owner 

F {} CPU0 

… 

ptable info 
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Centralized Manager Example 1: 
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Centralized Manager Example 1: 
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… 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

T nil F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F W T 
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lock copy_set owner 

F {} CPU0 
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ptable info 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

T nil F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F W T 

… 

lock copy_set owner 

T {} CPU0 

… 

ptable info 

read 

RQ 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

T nil F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F W T 

… 

lock copy_set owner 

T {CPU1} CPU0 

… 

ptable info 

read 

RQ 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

T nil F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F W T 

… 

lock copy_set owner 

T {CPU1} CPU0 

… 

ptable info 

read 

RQ 

RF 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

T nil F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

T W T 

… 

lock copy_set owner 

T {CPU1} CPU0 
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ptable info 
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RQ 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 
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T nil F 

… 
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… 
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T R T 

… 

lock copy_set owner 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 
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lock access owner? 
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lock access owner? 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 
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Centralized Manager Example 1: 
Owned by CPU0, CPU1 wants to read 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F R F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F R T 

… 

lock copy_set owner 

F {CPU1} CPU0 
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ptable info 

read 

RQ 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F R F 

… 

lock access owner? 

F nil F 

… 

lock access owner? 

F R T 

… 

lock copy_set owner 

F {CPU1} CPU0 

… 

ptable info 

write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F R F 

… 

lock access owner? 

T nil F 

… 

lock access owner? 

F R T 

… 

lock copy_set owner 

F {CPU1} CPU0 

… 

ptable info 

write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F R F 

… 

lock access owner? 

T nil F 

… 

lock access owner? 

F R T 

… 

lock copy_set owner 

F {CPU1} CPU0 

… 

ptable info 

write 

WQ 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 

T nil F 

… 

lock access owner? 

F R T 

… 

lock copy_set owner 

T {} CPU0 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 

T nil F 

… 

lock access owner? 

F R T 

… 

lock copy_set owner 

T {} CPU0 

… 

ptable info 

write 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 

T nil F 

… 

lock access owner? 

T nil F 

… 

lock copy_set owner 

T {} CPU0 

… 

ptable info 

write 

WQ 

IV 
IC 

WF 



 
51 

Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 

T nil F 

… 

lock access owner? 

T nil F 

… 
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T {} CPU0 

… 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 
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… 
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… 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 
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… 

lock access owner? 
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… 

lock copy_set owner 

T {} CPU0 
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Centralized Manager Example 2: 
Owned by CPU0, CPU2 wants to write 

CPU0 

CPU1 

CPU2 / MGR 

lock access owner? 

F nil F 

… 

lock access owner? 

F W T 

… 

lock access owner? 

F nil F 

… 

lock copy_set owner 

T {} CPU2 

… 

ptable info 

write 

WQ 

IV 
IC 

WF 

WD 

WC 
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What if Two CPUs Want to Write to 
Same Page at Same Time? 

•  Write has several steps, modifies multiple 
tables 

•  Invariants for tables: 
– MGR must agree with CPUs about single 

owner 
– MGR must agree with CPUs about copy_set 
– copy_set != {} must agree with read-only for 

owner 
•  Write operation should thus be atomic! 
•  What enforces atomicity? 
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Sequential Consistency: Definition 

•  Must exist total order of operations such that: 
–  All CPUs see results consistent with that total order 

(i.e., LDs see most recent ST in total order) 
–  Each CPU’s instructions appear in order in total order 

•  Two rules sufficient to implement sequential 
consistency [Lamport, 1979]: 
–  Each CPU must execute reads and writes in program 

order, one at a time 
–  Each memory location must execute reads and writes 

in arrival order, one at a time 
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Ivy and Consistency Models 

•  Consider done{0,1,2} example: 
– v0 = fn0(); done0 = true 
– In Ivy, can other CPU see done == true, 

but still see old v0? 
•  Does Ivy obey sequential 

consistency? 
– Yes! 
– Each CPU does R/W in program order 
– Each memory location does R/W in 

arrival order 
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Ivy: Evaluation 

•  Experiments include performance of PDE, 
matrix multiplication, and “block odd-even 
based merge-split algorithm” 

•  How to measure performance? 
– Speedup: x-axis is number of CPUs used, y-

axis is how many times faster the program 
ran with that many CPUs 

•  What’s the best speedup you should 
ever expect? 
– Linear 
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Ivy: Evaluation 

•  Experiments include performance of PDE, 
matrix multiplication, and “block odd-even 
based merge-split algorithm” 

•  How to measure performance? 
– Speedup: x-axis is number of CPUs used, y-

axis is how many times faster the program 
ran with that many CPUs 

•  What’s the best speedup you should 
ever expect? 
– Linear When do you expect speedup to be linear? 
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What’s “Block Odd-Even Based Merge-
Split Algorithm?” 

•  Partition data to be sorted over N CPUs, held in 
one shared array 

•  Sort data in each CPU locally 
•  View CPUs as in a line, number 0 to N-1 
•  Repeat N times: 

–  Even CPUs send to (higher) odd CPUs 
–  Odd CPUs merge, send lower half back to even CPUs 
–  Odd CPUs send to (higher) even CPUs 
–  Even CPUs merge, send lower half back to odd CPUs 

•  “Send” just means “receiver reads from right 
place in shared memory” 
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Ivy’s Speedup 

•  PDE and matrix multiplication: linear 
•  Sorting: worse than linear, flattens 

significantly beyond 2 CPUs 
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Ivy vs. RPC 

•  When would you prefer DSM to RPC? 
– More transparent 
– Easier to program for 

•  When would you prefer RPC to DSM? 
–  Isolation 
– Control over communication 
– Latency-tolerance 
– Portability 

•  Could Ivy benefit from RPC? 
– Possibly for efficient blocking/unblocking 
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DSM: Successful Idea? 

•  Spreading a computation across 
workstations? 
– Yes! Google, Inktomi, Beowulf, … 

•  Coherent access to shared memory? 
– Yes! Multi-CPU PCs use Ivy-like protocols for 

cache coherence between CPUs 
•  DSM as model for programming 

workstation cluster? 
– Little evidence of broad adoption 
– Too little control over communication, and 

communication dictates performance 


