
Distributed Shared Memory:
Ivy

Brad Karp
UCL Computer Science

CS GZ03 / M030
17th October 2011

2

Increasing Transparency:
From RPC to Shared Memory

•  In RPC, we’ve seen one way to split
application across multiple nodes
– Carefully specify interface between nodes
– Explicitly communicate between nodes
– Transparent to programmer?

•  Can we hide all inter-node communication
from programmer, and improve
transparency?
– Today’s topic: Distributed Shared Memory

3

Ivy: Distributed Shared Memory

•  Supercomputer: super-expensive 100-CPU
machine, custom-built hardware

•  Ivy: 100 cheap PCs and a LAN (all off-the-
shelf hardware!)

•  Both offer same easy view for
programmer:
–  single, shared memory, visible to all CPUs

4

Distributed Shared Memory: Problem

•  An application has a shared address
space; all memory locations accessible to
all instructions

•  Divide code for application into pieces,
assign one piece to each of several
computers on a LAN

•  Each computer has own separate memory
•  Each piece of code may want to read or

write any part of data
•  Where do you put the data?

5

Distributed Shared Memory: Solution

•  Goal: create illusion that all boxes share single
memory, accessible by all

•  Shared memory contents divided across nodes
–  Programmer needn’t explicitly communicate among

nodes
–  Pool memory of all nodes into one shared memory

•  Performance? Correctness?
–  Far slower to read/write across LAN than read/write

from/to local (same host’s) memory
–  Remember NFS: caching should help
–  Remember NFS: caching complicates consistency!

6

Context: Parallel Computation

•  Still need to divide program code across
multiple CPUs

•  Potential benefit: more total CPU power,
so faster execution

•  Potential risk: how will we know if
distributed program executes correctly?

•  To understand distributed shared memory,
must understand what “correct” execution
means…

7

Simple Case: Uniprocessor Correctness

•  When you only have one processor, what
does “correct” mean?

•  Define “correct” separately for each
instruction

•  Each instruction takes machine from one
state to another (e.g., ADD, LD, ST)
– LD should return value of most recent ST to

same memory address

8

Simple Case: Uniprocessor Correctness

•  When you only have one processor, what
does “correct” mean?

•  Define “correct” separately for each
instruction

•  Each instruction takes machine from one
state to another (e.g., ADD, LD, ST)
– LD should return value of most recent ST to

same memory address

“Correct” means:
Execution gives same result as if you ran one
instruction at a time, waiting for each to
complete

9

Why Define Correctness?

•  Programmers want to be able to predict how
CPU executes program!
–  …to write correct program

•  Note that modern CPUs don’t execute
instructions one-at-a-time in program order
–  Multiple instruction issue
–  Out-of-order instruction issue

•  Nevertheless, CPUs must behave such that they
obey uniprocessor correctness!

10

Distributed Correctness:
Naïve Shared Memory

•  Suppose we have multiple hosts with (for
now) naïve shared memory
– 3 hosts, each with one CPU, connected by

Internet
– Each host has local copy of all memory
– Reads local, so very fast
– Writes sent to other hosts (and execution

continues immediately)

•  Is naïve shared memory correct?

11

Example 1: Mutual Exclusion

CPU0:
 x = 1;
 if (y == 0)
 critical section;

CPU1:
 y = 1;
 if (x == 0)
 critical section;

•  Why is code correct?
–  If CPU0 sees y == 0, CPU1 can’t have executed “y =

1”
–  So CPU1 will see x == 1, and can’t enter critical

section

Initialization: x = y = 0 on both CPUs

12

Example 1: Mutual Exclusion

CPU0:
 x = 1;
 if (y == 0)
 critical section;

CPU1:
 y = 1;
 if (x == 0)
 critical section;

•  Why is code correct?
–  If CPU0 sees y == 0, CPU1 can’t have executed “y =

1”
–  So CPU1 will see x == 1, and can’t enter critical

section

Initialization: x = y = 0 on both CPUs

So CPU0 and CPU1 cannot simultaneously
enter critical section

13

Naïve Distributed Memory:
Incorrect for Example 1

•  Problem A:
– CPU0 sends “write x=1”, reads local “y == 0”
– CPU1 reads local “x == 0” before write arrives

•  Local memory and slow writes cause
disagreement about read/write order!
– CPU0 thinks its “x = 1” was before CPU1’s

read of x
– CPU1 thinks its read of x was before arrival of

“write x = 1”
•  Both CPU0 and CPU1 enter critical section!

14

Example 2:
Data Dependencies

CPU0:
 v0 = f0();
 done0 = true;

CPU1:
 while (done0 == false)
 ;
 v1 = f1(v0);
 done1 = true;

CPU2:
 while (done1 == false)
 ;
 v2 = f2(v0, v1);

15

Example 2:
Data Dependencies

CPU0:
 v0 = f0();
 done0 = true;

CPU1:
 while (done0 == false)
 ;
 v1 = f1(v0);
 done1 = true;

CPU2:
 while (done1 == false)
 ;
 v2 = f2(v0, v1);

Intent:
CPU2 should run f2() with
results from CPU0 and CPU1
Waiting for CPU1 implies
waiting for CPU0

16

Naïve Distributed Memory:
Incorrect for Example 2

•  Problem B:
– CPU0’s writes of v0 and done0 may be

reordered by network, leaving v0 unset, but
done0 true

•  But even if each CPU sees each other
CPU’s writes in issue order…

•  Problem C:
– CPU2 sees CPU1’s writes before CPU0’s writes
–  i.e., CPU2 and CPU1 disagree on order of

CPU0’s and CPU1’s writes

17

Naïve Distributed Memory:
Incorrect for Example 2

•  Problem B:
– CPU0’s writes of v0 and done0 may be

reordered by network, leaving v0 unset, but
done0 true

•  But even if each CPU sees each other
CPU’s writes in issue order…

•  Problem C:
– CPU2 sees CPU1’s writes before CPU0’s writes
–  i.e., CPU2 and CPU1 disagree on order of

CPU0’s and CPU1’s writes

Naïve distributed memory isn’t correct
(Or we shouldn’t expect code like these
examples to work…)

18

Distributed Correctness:
Consistency Models

•  How can we write correct distributed
programs with shared storage?

•  Need to define rules that memory system
will follow

•  Need to write programs with these rules in
mind

•  Rules are a consistency model
•  Build memory system to obey model;

programs that assume model then correct

19

How Do We Choose a
Consistency Model?

•  No such thing as “right” or “wrong” model
– All models are artificial definitions

•  Different models may be harder or easier
to program for
– Some models produce behavior that is more

intuitive than others
•  Different models may be harder or easier

to implement efficiently
– Performance vs. semantics trade-off, as with

NFS/RPC

20

Back to Ivy:
What’s It Good For?

•  Suppose you’ve got 100 PCs on a LAN and
shared memory across all of them

•  Fast, parallel sorting program:
Load entire array into shared memory
Each PC processes one section of array
On PC i:

sort own piece of array
done[i] = true;
wait for all done[] to be true
merge my piece of array with my neighbors’…

21

Partitioning Address Space:
Fixed Approach

•  Fixed approach:
– First MB on host 0, 2nd on host 1, &c.
– Send all reads and writes to “owner” of

address
– Each CPU read- and write-protects pages in

address ranges held by other CPUs
• Detect reads and writes to remote pages with VM

hardware

•  What if we placed pages on hosts poorly?
•  Can’t always predict which hosts will use

which pages

22

Partitioning Address Space:
Dynamic, Single-Copy Approach

•  Move the page to the reading/writing CPU
each time it is used

•  CPU trying to read or write must find
current owner, then take page from it

•  Requires mechanism to find current
location of page

•  What if many CPUs read same page?

23

Partitioning Address Space:
Dynamic, Multi-Copy Approach

•  Move page for writes, but allow read-only
copies

•  When CPU reads page it doesn’t have in
its own local memory, find other CPU that
most recently wrote to page

•  Works if pages are read-only and shared
or read-write by one host

•  Bad case: write sharing
– When does write sharing occur?
– False sharing, too…

24

Simple Ivy:
Centralized Manager (Section 3.1)

CPU0

CPU1

CPU2 / MGR

lock access owner?

lock access owner?

lock access owner?

lock copy_set owner

ptable info

•  ptable (all CPUs)
access: R, W, or nil
owner: T or F

•  info (MGR only)
copy_set: list of

CPUs with read-
only copies

owner: CPU that
can write page

25

Centralized Manager (2):
Message Types Between CPUs

•  RQ (read query, reader to MGR)
•  RF (read forward, MGR to owner)
•  RD (read data, owner to reader)
•  RC (read confirm, reader to MGR)
•  WQ (write query, writer to MGR)
•  IV (invalidate, MGR to copy_set)
•  IC (invalidate confirm, copy_set to MGR)
•  WF (write forward, MGR to owner)
•  WD (write data, owner to writer)
•  WC (write confirm, writer to MGR)

26

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

F {} CPU0

…

ptable info

27

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

F {} CPU0

…

ptable info

read

28

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

F {} CPU0

…

ptable info

read

29

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

F {} CPU0

…

ptable info

read

RQ

30

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

T {} CPU0

…

ptable info

read

RQ

31

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

32

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF

33

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

T W T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF

34

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

T R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF

35

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

T R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF
RD

36

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF
RD

37

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

F nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF
RD

RC

38

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

T R F

…

lock access owner?

F nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF
RD

RC

39

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

F nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

read

RQ

RF
RD

RC

40

Centralized Manager Example 1:
Owned by CPU0, CPU1 wants to read

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

F nil F

…

lock access owner?

F R T

…

lock copy_set owner

F {CPU1} CPU0

…

ptable info

read

RQ

RF
RD

RC

41

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

F nil F

…

lock access owner?

F R T

…

lock copy_set owner

F {CPU1} CPU0

…

ptable info

write

42

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

F {CPU1} CPU0

…

ptable info

write

43

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

F {CPU1} CPU0

…

ptable info

write

WQ

44

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

write

WQ

45

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F R F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {CPU1} CPU0

…

ptable info

write

WQ

IV

46

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

F {CPU1} CPU0

…

ptable info

write

WQ

IV

47

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

T nil F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

F {CPU1} CPU0

…

ptable info

write

WQ

IV
IC

48

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {} CPU0

…

ptable info

write

WQ

IV
IC

49

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

T nil F

…

lock access owner?

F R T

…

lock copy_set owner

T {} CPU0

…

ptable info

write

WQ

IV
IC

WF

50

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

T nil F

…

lock access owner?

T nil F

…

lock copy_set owner

T {} CPU0

…

ptable info

write

WQ

IV
IC

WF

51

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

T nil F

…

lock access owner?

T nil F

…

lock copy_set owner

T {} CPU0

…

ptable info

write

WQ

IV
IC

WF

WD

52

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

T W T

…

lock access owner?

F nil F

…

lock copy_set owner

T {} CPU0

…

ptable info

write

WQ

IV
IC

WF

WD

53

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

T W T

…

lock access owner?

F nil F

…

lock copy_set owner

T {} CPU0

…

ptable info

write

WQ

IV
IC

WF

WD

WC

54

Centralized Manager Example 2:
Owned by CPU0, CPU2 wants to write

CPU0

CPU1

CPU2 / MGR

lock access owner?

F nil F

…

lock access owner?

F W T

…

lock access owner?

F nil F

…

lock copy_set owner

T {} CPU2

…

ptable info

write

WQ

IV
IC

WF

WD

WC

55

What if Two CPUs Want to Write to
Same Page at Same Time?

•  Write has several steps, modifies multiple
tables

•  Invariants for tables:
– MGR must agree with CPUs about single

owner
– MGR must agree with CPUs about copy_set
– copy_set != {} must agree with read-only for

owner
•  Write operation should thus be atomic!
•  What enforces atomicity?

56

Sequential Consistency: Definition

•  Must exist total order of operations such that:
–  All CPUs see results consistent with that total order

(i.e., LDs see most recent ST in total order)
–  Each CPU’s instructions appear in order in total order

•  Two rules sufficient to implement sequential
consistency [Lamport, 1979]:
–  Each CPU must execute reads and writes in program

order, one at a time
–  Each memory location must execute reads and writes

in arrival order, one at a time

57

Ivy and Consistency Models

•  Consider done{0,1,2} example:
– v0 = fn0(); done0 = true
– In Ivy, can other CPU see done == true,

but still see old v0?
•  Does Ivy obey sequential

consistency?
– Yes!
– Each CPU does R/W in program order
– Each memory location does R/W in

arrival order

58

Ivy: Evaluation

•  Experiments include performance of PDE,
matrix multiplication, and “block odd-even
based merge-split algorithm”

•  How to measure performance?
– Speedup: x-axis is number of CPUs used, y-

axis is how many times faster the program
ran with that many CPUs

•  What’s the best speedup you should
ever expect?
– Linear

59

Ivy: Evaluation

•  Experiments include performance of PDE,
matrix multiplication, and “block odd-even
based merge-split algorithm”

•  How to measure performance?
– Speedup: x-axis is number of CPUs used, y-

axis is how many times faster the program
ran with that many CPUs

•  What’s the best speedup you should
ever expect?
– Linear When do you expect speedup to be linear?

60

What’s “Block Odd-Even Based Merge-
Split Algorithm?”

•  Partition data to be sorted over N CPUs, held in
one shared array

•  Sort data in each CPU locally
•  View CPUs as in a line, number 0 to N-1
•  Repeat N times:

–  Even CPUs send to (higher) odd CPUs
–  Odd CPUs merge, send lower half back to even CPUs
–  Odd CPUs send to (higher) even CPUs
–  Even CPUs merge, send lower half back to odd CPUs

•  “Send” just means “receiver reads from right
place in shared memory”

61

Ivy’s Speedup

•  PDE and matrix multiplication: linear
•  Sorting: worse than linear, flattens

significantly beyond 2 CPUs

62

Ivy vs. RPC

•  When would you prefer DSM to RPC?
– More transparent
– Easier to program for

•  When would you prefer RPC to DSM?
–  Isolation
– Control over communication
– Latency-tolerance
– Portability

•  Could Ivy benefit from RPC?
– Possibly for efficient blocking/unblocking

63

DSM: Successful Idea?

•  Spreading a computation across
workstations?
– Yes! Google, Inktomi, Beowulf, …

•  Coherent access to shared memory?
– Yes! Multi-CPU PCs use Ivy-like protocols for

cache coherence between CPUs
•  DSM as model for programming

workstation cluster?
– Little evidence of broad adoption
– Too little control over communication, and

communication dictates performance

