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Outline 

•  “Worse Is Better” and Distributed Systems 

•  Problem: Naïve single-process server 
leaves system resources idle; I/O blocks 
– Goal: I/O concurrency 
– Goal: CPU concurrency 

•  Solutions 
– Multiple processes 
– One process, many threads 
– Event-driven I/O (not in today’s lecture) 
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Review: How Do Servers Use Syscalls? 

•  Consider server_1() web server (in 
handout) 
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Review: How Do Servers Use Syscalls? 

•  Consider server_1() web server (in 
handout) 
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Performance and Concurrency 

•  Under heavy load, server_1(): 
– Leaves resources idle 
– …and has a lot of work to do! 

•  Why? 
– Software poorly structured! 
– What would a better structure look like? 
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Solution: I/O Concurrency 

•  Can we overlap I/O with other useful 
work? Yes: 
– Web server: if files in disk cache, I/O wait 

spent mostly blocked on write to network 
– Networked file system client: could compile 

first part of file while fetching second part 
•  Performance benefits potentially huge 

– Say one client causes disk I/O, 10 ms 
–  If other clients’ requests in cache, could serve 

100 other clients during that time! 
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One Process 
May Be Better Than You Think 

•  OS provides I/O concurrency to application 
transparently when it can, e.g., 
– Filesystem does read-ahead into disk buffer 

cache; write-behind from disk buffer cache 
– Networking code copies arriving packets into 

application’s kernel socket buffer; copies app’s 
data into kernel socket buffer on write() 
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I/O Concurrency with 
Multiple Processes 

•  Idea: start new UNIX process for each client 
connection/request 

•  Master process assigns new connections to child 
processes 

•  Now plenty of work to keep system busy! 
–  One process blocks in syscall, others can process 

arriving requests 

•  Structure of software still simple 
–  See server_2() in webserver.c 
–  fork() after accept() 
–  Otherwise, software structure unchanged! 
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Multiple Processes: More Benefits 

•  Isolation 
– Bug while processing one client’s request 

leaves other clients/requests unaffected 
– Processes do interact, but OS arbitrates (e.g., 

“lock the disk request queue”) 

•  CPU concurrency for “free” 
–  If more than one CPU in box, each process 

may run on one CPU 
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CPU Concurrency 

•  Single machine may have multiple CPUs, one 
shared memory 
–  Symmetric Multiprocessor (SMP) PCs 
–  Intel Core Duo 

•  I/O concurrency tools often help with CPU 
concurrency 
–  But way more work for OS designer! 

•  Generally, CPU concurrency way less important 
than I/O concurrency 
–  Factor of 2X, not 100X 
–  Very hard to program to get good scaling 
–  Easier to buy 2 machines (see future lectures!) 



 
11 

Problems with Multiple Processes 

•  fork() may be expensive 
– Memory for new address space 
– 300 us minimum on modern PC running UNIX 

•  Processes fairly isolated by default 
– Memory not shared 
– How do you build web cache on server visible 

to all processes? 
– How do you simply keep statistics? 



 
12 

Concurrency with Threads 

•  Similar to multiple processes 
•  Difference: one address space 

– All threads share same process’ memory 
– One stack per thread, inside process 

•  Seems simple: single-process structure! 
•  Programmer needs to use locks 
•  One thread can corrupt another (i.e., no 

cross-request isolation) 
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Concurrency with Threads 
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Threads: Low-Level Details Are Hard! 

•  Suppose thread calls read() (or other 
blocking syscall) 
– Does whole process block until I/O done? 
–  If so, no I/O concurrency! 

•  Two solutions: 
– Kernel-supported threads 
– User-supported threads 
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Kernel-Supported Threads 

•  OS kernel aware of each thread 
– Knows if thread blocks, e.g., disk read wait 
– Can schedule another thread 

•  Kernel requirements: 
– Per-thread kernel stack 
– Per-thread tables (e.g., saved registers) 

•  Semantics: 
– Per-process: address space, file descriptors 
– Per-thread: user stack, kernel stack, kernel 

state 
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Kernel-Supported Threads 
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Kernel Threads: Trade-Offs 

•  Kernel can schedule one thread per CPU 
–  Fits our goals well: both CPU and I/O concurrency 

•  But kernel threads expensive, like processes: 
–  Kernel must help create each thread 
–  Kernel must help with thread context switch! 

•  Which thread took a page fault? 

–  Lock/unlock must invoke kernel, but heavily used 

•  Kernel threads not portable; not offered by 
many OSes 
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User-Level Threads 

•  Purely inside user process; kernel oblivious 
•  Scheduler within user process for process’ 

own threads 
–  In addition to kernel’s process scheduler 

•  User-level scheduler must 
– Know when thread makes blocking syscall 
– Not block process; switch to another thread 
– Know when I/O done, to wake up original 

thread 
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User-Level Thread Implementation 
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User-Level Threads: Details 

•  Apps linked against thread library 
•  Library contains “fake” read(), write(), 

accept(), &c. syscalls 
•  Library can start non-blocking syscall 

operations 
•  Library marks threads as waiting, switches 

to runnable thread 
•  Kernel notifies library of I/O completion 

and other events; library marks waiting 
thread runnable 



 
21 

User-Level Threads: read() Example 

read() { 
tell kernel to start read; 
mark thread waiting for read; 
sched(); 

} 
sched() { 

 ask kernel for I/O completion events; 
 mark corresponding threads runnable; 
 find runnable thread; 
 restore registers and return; 

} 
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User-Level Threads: 
Event Notification 

•  Events thread library needs from kernel: 
– new network connection 
– data arrived on socket 
– disk read completed 
– socket ready for further write()s 

•  Resembles miniature OS inside process! 
•  Problem: user-level threads demand 

significant kernel support: 
– non-blocking system calls 
– uniform event delivery mechanism 
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Event Notification in Typical OSes 

•  Usually, event notification only partly 
supported; e.g., in UNIX: 
– new TCP connections, arriving TCP/pipe/tty 

data: YES 
–  filesystem operation completion: NO 

•  Similarly, not all syscalls can be started 
without waiting, e.g., in UNIX: 
– connect(), read()/write() on socket 
– open(), stat(): NO 
–  read() from disk: SOMETIMES (e.g., 

aio_read()) 



•  Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c): 

sys_read(fd, user_buffer, n) { 
// read the file’s i-node from disk 
struct inode *i = alloc_inode(); 
start_disk(…, i); 
wait_for_disk(i); 
// the i-node tells us where the data are; read it. 
struct buf *b = alloc_buf(i->…); 
start_disk(…, b); 
wait_for_disk(b); 
copy_to_user(b, user_buffer); 

}  
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Non-blocking System Calls: 
Hard to Implement 



•  Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c): 

sys_read(fd, user_buffer, n) { 
// read the file’s i-node from disk 
struct inode *i = alloc_inode(); 
start_disk(…, i); 
wait_for_disk(i); 
// the i-node tells us where the data are; read it. 
struct buf *b = alloc_buf(i->…); 
start_disk(…, b); 
wait_for_disk(b); 
copy_to_user(b, user_buffer); 

}  
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Non-blocking System Calls: 
Hard to Implement 

Why not just return to user program instead 
of calling wait_for_disk()? 
How will kernel know where to continue? 
In user space? In kernel? 

Problem: Keeping state for complex, multi-
step operations 
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User-Threads: 
Implementation Choices 

•  Live with only partial support for user-level 
threads 

•  New operating system with totally 
different syscall interface 
– One syscall per non-blocking “sub-operation” 
– Kernel doesn’t need to keep state across 

multiple steps 
– e.g., lookup_one_path_component() 

•  Microkernel: no system calls, just 
messages to servers, with non-blocking 
communication 
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Threads: Programming Difficulty 

•  Sharing of data structures in one address space 
•  Even on single CPU, thread model necessitates 

CPU concurrency 
–  Locks often needed for mutual exclusion on data 

structures 
–  May only have wanted to overlap I/O wait! 

•  Events usually occur one-at-a-time 
–  Can we do CPU sequentially, and overlap only wait for 

I/O? 
–  Yes: event-driven programming 
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Event-Driven Programming 

•  Foreshadowed by user-level threads 
implementation 
–  Organize software around event arrival 

•  Write software in state-machine style 
–  “When event X occurs, execute this function.” 

•  Library support for registering interest in events 
(e.g., data available to read()) 

•  Desirable properties: 
–  Serial nature of events preserved 
–  Programmer sees only one event/function at a time 


