
Background: I/O Concurrency

Brad Karp
UCL Computer Science

CS GZ03 / M030
5th October 2011

2

Outline

•  “Worse Is Better” and Distributed Systems

•  Problem: Naïve single-process server
leaves system resources idle; I/O blocks
– Goal: I/O concurrency
– Goal: CPU concurrency

•  Solutions
– Multiple processes
– One process, many threads
– Event-driven I/O (not in today’s lecture)

3

Review: How Do Servers Use Syscalls?

•  Consider server_1() web server (in
handout)

time

time

time
application CPU

disk syscalls

network syscalls

R

R W W

R

C

4

Review: How Do Servers Use Syscalls?

•  Consider server_1() web server (in
handout)

time

time

time
application CPU

disk syscalls

network syscalls

Server waits for each resource in turn
Each resource largely idle
What if there are many clients?

R

R W W

R

C

5

Performance and Concurrency

•  Under heavy load, server_1():
– Leaves resources idle
– …and has a lot of work to do!

•  Why?
– Software poorly structured!
– What would a better structure look like?

6

Solution: I/O Concurrency

•  Can we overlap I/O with other useful
work? Yes:
– Web server: if files in disk cache, I/O wait

spent mostly blocked on write to network
– Networked file system client: could compile

first part of file while fetching second part
•  Performance benefits potentially huge

– Say one client causes disk I/O, 10 ms
–  If other clients’ requests in cache, could serve

100 other clients during that time!

7

One Process
May Be Better Than You Think

•  OS provides I/O concurrency to application
transparently when it can, e.g.,
– Filesystem does read-ahead into disk buffer

cache; write-behind from disk buffer cache
– Networking code copies arriving packets into

application’s kernel socket buffer; copies app’s
data into kernel socket buffer on write()

8

I/O Concurrency with
Multiple Processes

•  Idea: start new UNIX process for each client
connection/request

•  Master process assigns new connections to child
processes

•  Now plenty of work to keep system busy!
–  One process blocks in syscall, others can process

arriving requests

•  Structure of software still simple
–  See server_2() in webserver.c
–  fork() after accept()
–  Otherwise, software structure unchanged!

9

Multiple Processes: More Benefits

•  Isolation
– Bug while processing one client’s request

leaves other clients/requests unaffected
– Processes do interact, but OS arbitrates (e.g.,

“lock the disk request queue”)

•  CPU concurrency for “free”
–  If more than one CPU in box, each process

may run on one CPU

10

CPU Concurrency

•  Single machine may have multiple CPUs, one
shared memory
–  Symmetric Multiprocessor (SMP) PCs
–  Intel Core Duo

•  I/O concurrency tools often help with CPU
concurrency
–  But way more work for OS designer!

•  Generally, CPU concurrency way less important
than I/O concurrency
–  Factor of 2X, not 100X
–  Very hard to program to get good scaling
–  Easier to buy 2 machines (see future lectures!)

11

Problems with Multiple Processes

•  fork() may be expensive
– Memory for new address space
– 300 us minimum on modern PC running UNIX

•  Processes fairly isolated by default
– Memory not shared
– How do you build web cache on server visible

to all processes?
– How do you simply keep statistics?

12

Concurrency with Threads

•  Similar to multiple processes
•  Difference: one address space

– All threads share same process’ memory
– One stack per thread, inside process

•  Seems simple: single-process structure!
•  Programmer needs to use locks
•  One thread can corrupt another (i.e., no

cross-request isolation)

13

Concurrency with Threads

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App2 0 0

N
M

t1
stack

t2
stack

14

Threads: Low-Level Details Are Hard!

•  Suppose thread calls read() (or other
blocking syscall)
– Does whole process block until I/O done?
–  If so, no I/O concurrency!

•  Two solutions:
– Kernel-supported threads
– User-supported threads

15

Kernel-Supported Threads

•  OS kernel aware of each thread
– Knows if thread blocks, e.g., disk read wait
– Can schedule another thread

•  Kernel requirements:
– Per-thread kernel stack
– Per-thread tables (e.g., saved registers)

•  Semantics:
– Per-process: address space, file descriptors
– Per-thread: user stack, kernel stack, kernel

state

16

Kernel-Supported Threads

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App2 0 0

N
M

t1
stack

stack,
table

t2
stack

stack,
table

17

Kernel Threads: Trade-Offs

•  Kernel can schedule one thread per CPU
–  Fits our goals well: both CPU and I/O concurrency

•  But kernel threads expensive, like processes:
–  Kernel must help create each thread
–  Kernel must help with thread context switch!

•  Which thread took a page fault?

–  Lock/unlock must invoke kernel, but heavily used

•  Kernel threads not portable; not offered by
many OSes

18

User-Level Threads

•  Purely inside user process; kernel oblivious
•  Scheduler within user process for process’

own threads
–  In addition to kernel’s process scheduler

•  User-level scheduler must
– Know when thread makes blocking syscall
– Not block process; switch to another thread
– Know when I/O done, to wake up original

thread

19

User-Level Thread Implementation

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App2 0 0

N
M

t1
stack

t2
stack

Thread Scheduler

Process Scheduler

20

User-Level Threads: Details

•  Apps linked against thread library
•  Library contains “fake” read(), write(),

accept(), &c. syscalls
•  Library can start non-blocking syscall

operations
•  Library marks threads as waiting, switches

to runnable thread
•  Kernel notifies library of I/O completion

and other events; library marks waiting
thread runnable

21

User-Level Threads: read() Example

read() {
tell kernel to start read;
mark thread waiting for read;
sched();

}
sched() {

 ask kernel for I/O completion events;
 mark corresponding threads runnable;
 find runnable thread;
 restore registers and return;

}

22

User-Level Threads:
Event Notification

•  Events thread library needs from kernel:
– new network connection
– data arrived on socket
– disk read completed
– socket ready for further write()s

•  Resembles miniature OS inside process!
•  Problem: user-level threads demand

significant kernel support:
– non-blocking system calls
– uniform event delivery mechanism

23

Event Notification in Typical OSes

•  Usually, event notification only partly
supported; e.g., in UNIX:
– new TCP connections, arriving TCP/pipe/tty

data: YES
–  filesystem operation completion: NO

•  Similarly, not all syscalls can be started
without waiting, e.g., in UNIX:
– connect(), read()/write() on socket
– open(), stat(): NO
–  read() from disk: SOMETIMES (e.g.,

aio_read())

•  Typical syscall implementation, inside the kernel,
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

}
24

Non-blocking System Calls:
Hard to Implement

•  Typical syscall implementation, inside the kernel,
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

}
25

Non-blocking System Calls:
Hard to Implement

Why not just return to user program instead
of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?

Problem: Keeping state for complex, multi-
step operations

26

User-Threads:
Implementation Choices

•  Live with only partial support for user-level
threads

•  New operating system with totally
different syscall interface
– One syscall per non-blocking “sub-operation”
– Kernel doesn’t need to keep state across

multiple steps
– e.g., lookup_one_path_component()

•  Microkernel: no system calls, just
messages to servers, with non-blocking
communication

27

Threads: Programming Difficulty

•  Sharing of data structures in one address space
•  Even on single CPU, thread model necessitates

CPU concurrency
–  Locks often needed for mutual exclusion on data

structures
–  May only have wanted to overlap I/O wait!

•  Events usually occur one-at-a-time
–  Can we do CPU sequentially, and overlap only wait for

I/O?
–  Yes: event-driven programming

28

Event-Driven Programming

•  Foreshadowed by user-level threads
implementation
–  Organize software around event arrival

•  Write software in state-machine style
–  “When event X occurs, execute this function.”

•  Library support for registering interest in events
(e.g., data available to read())

•  Desirable properties:
–  Serial nature of events preserved
–  Programmer sees only one event/function at a time

