
The Kerberos
Authentication System

Brad Karp
UCL Computer Science

CS GZ03 / M030
23rd November 2011

2

Why Study Kerberos?

•  One of most widely used authentication
systems, implemented in many, many
UNIXes for a variety of services

•  Simple example of use of cryptography to
solve practical authentication problems

•  Imperfect; weaknesses instructive

3

Kerberos: Goals

•  Authentication of diverse entities, for diverse
services:
–  Users, client machines, server machines
–  File systems, remote login, file transfer, printing, &c.

•  Authentication in an “open environment”
–  Users may be superuser on their own workstations

(so may adopt any user ID if credentials over network
unauthenticated); hardware not centrally controlled

–  Same user population may use many machines and
services (e.g., labs of public-access machines on a
campus)

•  Drop-in replacement of passwords for pre-
existing protocols
–  Convenient; strength of security?

4

Kerberos Model: Central Authority

•  Within a site (e.g., MIT), a central
database server stores names and secret
keys for all principals
– Keys are for 56-bit DES symmetric-key cipher
– Now brute-forceable; more reasonable at time

of Kerberos’ first use (1988)
•  All users and machines are principals,

named with human-readable names
•  All principals trust central database server

5

Kerberos Principal Names

•  Users: e.g., bkarp
–  Can have instances; sub-names of a principal, e.g.,

bkarp.mail, bkarp.root

•  Machines: e.g., boffin, arkell, sonic
•  Services: e.g., rlogin.sonic (instance of the rlogin

service running on sonic)
•  Site name: realm; all machines in one

administrative domain share one central
Kerberos database, in same realm

•  name.instance@realm, e.g., bkarp@UCL.AC.UK

6

Kerberos Protocol

•  Goal: mutually authenticated communication
–  Two principals wish to communicate
–  Principals know each other by name in central

database
–  Kerberos establishes shared secret between the two
–  Can use shared secret to encrypt or MAC subsequent

communication
–  [Few “Kerberized” services encrypt, and none MAC!]

•  Approach: leverage keys shared with central
database
–  Central database trusted by/has keys for all principals

7

Kerberos Credentials

•  Client can either be user or machine,
depending on context

•  To talk to server s, client c needs shared
secret key and ticket:
– Session key: Ks,c (randomly generated by

central database)
– Ticket:

T = {s, c, addrc, timestamp, lifetime, Ks,c}Ks
(where Ks is key s shares with database)

– Only server s can decrypt ticket

8

Kerberos Credentials (2)

•  Given ticket, client creates authenticator:
–  Authenticator:

A = {c, addrc, timestamp}Ks,c
–  Client must know Ks,c to create authenticator
–  Authenticator can only be used once

•  Client presents both ticket T and authenticator A
to server when requesting an operation
–  T convinces server that Ks,c was given to c
–  A intended to prevent replay of requests

•  “Kerberized” protocols use authenticator in place
of password

9

Getting the User’s First Ticket

•  User logs in at console with username and
password (username is Kerberos name)

•  Kerberized login program retrieves initial ticket
for user:
–  Client machine sends to Kerberos database:

c, tgs
(tgs is principal name for ticket-granting service)

–  Server responds with:
{Kc,tgs, {Tc,tgs}Ktgs

}Kc
–  where

Tc,tgs = tgs, c, addrc, timestamp, lifetime, Kc,tgs
–  Client decrypts server’s response with

Kc = H(password)

10

Requesting a Service

•  Client c (e.g., user bkarp) wishes to use a
service on s, already holds Kc,tgs

•  Client requests ticket from tgs as follows:
– Client sends to tgs:

s, {Tc,tgs}Ktgs, {Ac}Kc,tgs
–  tgs replies to client with ticket for service on

that server:
{{Tc,s}Ks,Kc,s}Kc,tgs

– where Kc,s is a new, randomly generated
session key for use between c and s

11

Using a Service

•  Once client holds ticket for service, uses it
with authenticator to request operation
from server:
– Client sends to s:

service name, {Tc,s}Ks,{Ac}Kc,s
– Server validates Tc,s and Ac, and executes

operation if they are valid

•  Server uses timestamps and expiration
times to invalidate stale, “future”, replayed
requests

12

Kerberos: Summary of Message Flow

1.  Request for TGS ticket:
c, tgs

2.  Ticket for TGS:
{Kc,tgs, {Tc,tgs}Ktgs}Kc

3.  Request for Server ticket:
s, {Tc,tgs}Ktgs, {Ac}Kc,tgs

4.  Ticket for Server:
{{Tc,s}Ks,Kc,s}Kc,tgs

5.  Request for Service:
service name, {Tc,s}Ks,{Ac}Kc,s

KDC

User/
Client

TGS

Server

1

2 3

4

5

13

Ticket Lifetime

•  How should we choose ticket lifetimes?
•  Convenience: longer ticket-granting ticket

lifetime à user must type password less often
•  Performance: longer service ticket lifetime à

client must request new service ticket less often
•  Risk: longer ticket lifetime lengthens period

when ticket can be stolen, abused
•  MIT Athena implementation destroys ticket-

granting ticket when user logs out

14

Kerberos Security Weaknesses

•  Vulnerability to replay attacks
•  Reliance on synchronized clocks across

nodes
•  Storage of tickets on workstations
•  No way to change compromised password

securely
•  Key database focal point for attack
•  Hard to upgrade key database (relied on

by all nodes in system)

15

Kerberos User Inconveniences

•  Large (e.g., university-wide) administrative
realms:
–  University-wide admins often on critical path
–  Departments can’t add users or set up new servers
–  Can’t develop new services without central admins
–  Can’t upgrade software/protocols without central

admins
–  Central admins have monopoly servers/services (can’t

set up your own without a principal)
•  Rigid; what if user from realm A wants to

authenticate himself to host at realm B?
•  Ticket expirations

–  Must renew tickets every 12-23 hours
–  How to create long-running background jobs?

