
Managing Heavy Network Load:
Eliminating Receive Livelock

Brad Karp
UCL Computer Science

CS GZ03 / M030
4th November 2011

Engineering for Performance

•  Much of the work in distributed systems
concerns designing for
–  Consistency
–  Availability
–  Performance

•  Performance is multi-faceted
– Not just determined by design of distributed

system itself (algorithms, protocols)
–  Low-level hardware, OS behavior play major role

•  Achieving high performance requires deep
understanding of all layers: hardware, OS,
all the way through algorithms and protocols!

2

Engineering for Performance

•  Much of the work in distributed systems
concerns designing for
–  Consistency
–  Availability
–  Performance

•  Performance is multi-faceted
– Not just determined by design of distributed

system itself (algorithms, protocols)
–  Low-level hardware, OS behavior play major role

•  Achieving high performance requires deep
understanding of all layers: hardware, OS,
all the way through algorithms and protocols!

3

Systems Thinking: the ability to reason about
complex interactions among many layers, to find
problems (and (re)design to avoid them)

Heavy Load Happens

•  Servers have limited CPU, network link
capacity, memory, disk bandwidth

•  Demand often approaches or exceeds a
server’s capacity, e.g.,
–  Flash crowds at web server
–  Busy NFS server as client population grows
–  IP router or firewall carrying flash crowd traffic

(or denial of service attack traffic!)
•  But software design can limit performance

at loads lighter than where these hardware
limits kick in…

4

Example:
IP Packet Forwarding Performance

5

•  Hardware: commodity workstation
(DECstation 3000/300; PC-like), two 10
Mbps Ethernet interfaces

•  Software: Digital UNIX 3.2 OS, screend
firewall application in userspace

•  Workload: forward IP packets from one
Ethernet to another (UDP packets, 4 bytes
of payload each)

•  Packet-generating host has faster CPU
than forwarder

Example:
IP Packet Forwarding Performance

6

•  Hardware: commodity workstation
(DECstation 3000/300; PC-like), two 10
Mbps Ethernet interfaces

•  Software: Digital UNIX 3.2 OS, screend
firewall application in userspace

•  Workload: forward IP packets from one
Ethernet to another (UDP packets, 4 bytes
of payload each)

•  Packet-generating host has faster CPU
than forwarder

Question: How well does whole system scale as
load increases?
Experiment: vary input packet rate to forwarder;
observe output packet rate

Example:
IP Packet Forwarding Performance

7

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

5000

1000

2000

3000

4000

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/s

ec
)

Without screend

With screend

Figure 6-1: Forwarding performance of unmodified kernel

From these tests, it was clear that with screend mitted on the output interface. When the system is
running, the router suffered from poor overload be- overloaded, it should discard packets as early as pos-
havior at rates above 2000 packets/sec., and complete sible (i.e., in the receiving interface), so that dis-
livelock set in at about 6000 packets/sec. Even with- carded packets do not waste any resources.
out screend, the router peaked at 4700 packets/sec.,
and would probably livelock somewhat below the 6.4. Fixing the livelock problem
maximum Ethernet packet rate of about 14,880 We solved the livelock problem by doing as much
packets/second. work as possible in a kernel thread, rather than in the

interrupt handler, and by eliminating the IP input
6.3. Why livelock occurs in the 4.2BSD model queue and its associated queue manipulations and

14.2BSD follows the model described in section software interrupt (or thread dispatch) . Once we
4.1, and depicted in figure 6-2. The device driver decide to take a packet from the receiving interface,
runs at interrupt priority level (IPL) = SPLIMP, and we try not to discard it later on, since this would
the IP layer runs via a software interrupt at IPL = represent wasted effort.
SPLNET, which is lower than SPLIMP. The queue We also try to carefully ‘‘schedule’’ the work
between the driver and the IP code is named done in this thread. It is probably not possible to use
‘‘ipintrq,’’ and each output interface is buffered by a the system’s real scheduler to control the handling of
queue of its own. All queues have length limits; each packet, so we instead had this thread use a poll-
excess packets are dropped. Device drivers in this ing technique to efficiently simulate round-robin
system implement interrupt batching, so at high input scheduling of packet processing. The polling thread
rates very few interrupts are actually taken. uses additional heuristics to help meet our perfor-

Digital UNIX follows a similar model, with the IP mance goals.
layer running as a separately scheduled thread at IPL In the new system, the interrupt handler for an
= 0, instead of as a software interrupt handler. interface driver does almost no work at all. Instead,

It is now quite obvious why the system suffers it simple schedules the polling thread (if it has not
from receive livelock. Once the input rate exceeds already been scheduled), recording its need for
the rate at which the device driver can pull new pack- packet processing, and then returns from the inter-
ets out of the interface and add them to the IP input rupt. It does not set the device’s interrupt-enable
queue, the IP code never runs. Thus, it never flag, so the system will not be distracted with ad-
removes packets from its queue (ipintrq), which fills ditional interrupts until the polling thread has
up, and all subsequent received packets are dropped. processed all of the pending packets.

The system’s CPU resources are saturated be- At boot time, the modified interface drivers
cause it discards each packet after a lot of CPU time register themselves with the polling system, provid-
has been invested in it at elevated IPL. This is
foolish; once a packet has made its way through the
device driver, it represents an investment and should

1be processed to completion if at all possible. In a This is not such a radical idea; Van Jacobson had al-
ready used it as a way to improve end-system TCProuter, this means that the packet should be trans-
performance [4].

•  Peak output rate w/o firewall: ~4700 pkt/s
•  Beyond ~4700 pkt/s, output rate

decreases with further increasing load!

Example:
IP Packet Forwarding Performance

8

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

5000

1000

2000

3000

4000

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/s

ec
)

Without screend

With screend

Figure 6-1: Forwarding performance of unmodified kernel

From these tests, it was clear that with screend mitted on the output interface. When the system is
running, the router suffered from poor overload be- overloaded, it should discard packets as early as pos-
havior at rates above 2000 packets/sec., and complete sible (i.e., in the receiving interface), so that dis-
livelock set in at about 6000 packets/sec. Even with- carded packets do not waste any resources.
out screend, the router peaked at 4700 packets/sec.,
and would probably livelock somewhat below the 6.4. Fixing the livelock problem
maximum Ethernet packet rate of about 14,880 We solved the livelock problem by doing as much
packets/second. work as possible in a kernel thread, rather than in the

interrupt handler, and by eliminating the IP input
6.3. Why livelock occurs in the 4.2BSD model queue and its associated queue manipulations and

14.2BSD follows the model described in section software interrupt (or thread dispatch) . Once we
4.1, and depicted in figure 6-2. The device driver decide to take a packet from the receiving interface,
runs at interrupt priority level (IPL) = SPLIMP, and we try not to discard it later on, since this would
the IP layer runs via a software interrupt at IPL = represent wasted effort.
SPLNET, which is lower than SPLIMP. The queue We also try to carefully ‘‘schedule’’ the work
between the driver and the IP code is named done in this thread. It is probably not possible to use
‘‘ipintrq,’’ and each output interface is buffered by a the system’s real scheduler to control the handling of
queue of its own. All queues have length limits; each packet, so we instead had this thread use a poll-
excess packets are dropped. Device drivers in this ing technique to efficiently simulate round-robin
system implement interrupt batching, so at high input scheduling of packet processing. The polling thread
rates very few interrupts are actually taken. uses additional heuristics to help meet our perfor-

Digital UNIX follows a similar model, with the IP mance goals.
layer running as a separately scheduled thread at IPL In the new system, the interrupt handler for an
= 0, instead of as a software interrupt handler. interface driver does almost no work at all. Instead,

It is now quite obvious why the system suffers it simple schedules the polling thread (if it has not
from receive livelock. Once the input rate exceeds already been scheduled), recording its need for
the rate at which the device driver can pull new pack- packet processing, and then returns from the inter-
ets out of the interface and add them to the IP input rupt. It does not set the device’s interrupt-enable
queue, the IP code never runs. Thus, it never flag, so the system will not be distracted with ad-
removes packets from its queue (ipintrq), which fills ditional interrupts until the polling thread has
up, and all subsequent received packets are dropped. processed all of the pending packets.

The system’s CPU resources are saturated be- At boot time, the modified interface drivers
cause it discards each packet after a lot of CPU time register themselves with the polling system, provid-
has been invested in it at elevated IPL. This is
foolish; once a packet has made its way through the
device driver, it represents an investment and should

1be processed to completion if at all possible. In a This is not such a radical idea; Van Jacobson had al-
ready used it as a way to improve end-system TCProuter, this means that the packet should be trans-
performance [4].

•  Peak output rate w/o firewall: ~4700 pkt/s
•  Beyond ~4700 pkt/s, output rate

decreases with further increasing load!

Suppose hardware’s capacity is 4700 pkt/s.
What would ideal system behavior be beyond that
input rate?

Background:
I/O Device Hardware

•  I/O devices need to notify CPU of events
–  Packet arrival at network interface
– Disk read complete
–  Key pressed on keyboard

•  Two main ways CPU can learn of events:
–  Polling: CPU “asks” hardware device if any events

have occurred (synchronous)
–  Interrupt: hardware device sends a signal to CPU

saying “events have completed” (asynchronous)

•  Key concerns: event latency and CPU load

9

Polling

•  Requires programmed or memory-mapped
I/O (relatively slow; over I/O bus)

•  CPU “blindly” polls device explicitly in code
–  to guarantee low latency, must poll very often
–  high CPU overhead to poll very often

•  For rare I/O events, CPU overhead of polling
unattractive

•  Disk I/Os complete only 100s of times per
second; in 1980s-90s, only hundreds of
network packets arrived per second

•  OSes in that era eschewed polling

10

Interrupts

•  I/O devices have dedicated wire(s) that they can
use to signal interrupt(s) to CPU

•  On interrupt, if interrupt priority level (IPL) > CPU
priority level:
–  CPU saves state of currently running program
–  jumps to interrupt service routine (ISR) in kernel
–  invokes device driver, which asks device for events
–  returns to previously running program

•  CPU priority level: kernel-set machine state
specifying which interrupts allowed (others
postponed by CPU)

•  On modern x86_64, interrupt latency of ~3 us
from device interrupt to start of ISR

11

Interrupts

•  I/O devices have dedicated wire(s) that they can
use to signal interrupt(s) to CPU

•  On interrupt, if interrupt priority level (IPL) > CPU
priority level:
–  CPU saves state of currently running program
–  jumps to interrupt service routine (ISR) in kernel
–  invokes device driver, which asks device for events
–  returns to previously running program

•  CPU priority level: kernel-set machine state
specifying which interrupts allowed (others
postponed by CPU)

•  On modern x86_64, interrupt latency of ~3 us
from device interrupt to start of ISR

12

Interrupts well-suited to rare I/O events: lower
latency than rarely polling, lower CPU cost than
constantly polling
Interrupts asynchronous—they preempt other
system activity

Interrupts and Network I/O

•  Disk I/O requests come from OS itself;
completion interrupts inherently rate-
controlled

•  Network packets come from other hosts; no
“local” rate control for received packet
interrupts

•  Remember: interrupts take priority over all
other system processing (over other kernel
execution, user-space applications)

•  What will happen when received packet rate
extremely high?
–  Answer depends on detailed software structure…

13

Interrupts and Network I/O

•  Disk I/O requests come from OS itself;
completion interrupts inherently rate-
controlled

•  Network packets come from other hosts; no
“local” rate control for received packet
interrupts

•  Remember: interrupts take priority over all
other system processing (over other kernel
execution, user-space applications)

•  What will happen when received packet rate
extremely high?
–  Answer depends on detailed software structure…

14

Receive Livelock:
When event rate (pkt arrival rate) so high, system
spends all its time servicing interrupts, gets no
other work done!

Design Goals for
Network I/O System

•  Goals:
–  Low latency for responding to I/O events
–  Low jitter (variance in latency)
–  Fairness: resources allocated evenly among tasks
– High throughput for I/O (e.g., achievable packet

receive rate, transmit rate)
•  What are the tasks for a network server?

–  Packet reception
–  Packet transmission
–  Protocol processing (often in kernel)
– Other I/O processing
–  Application processing

15

Background: OS Architecture for
Interrupt-Driven Networking

•  Packet arrives
•  Network card interrupts at “high” IPL
•  ISR looks at Ethernet header, enqueues

packet for further processing, returns
•  “Low” IPL software interrupt dequeues

packets from queue, does IP/UDP/TCP
processing, enqueues data for dst process

•  Process reads data with read() system call
•  Queues denote scheduling and priority

level boundaries
16

Background: OS Architecture for
Interrupt-Driven Networking

•  Packet arrives
•  Network card interrupts at “high” IPL
•  ISR looks at Ethernet header, enqueues

packet for further processing, returns
•  “Low” IPL software interrupt dequeues

packets from queue, does IP/UDP/TCP
processing, enqueues data for dst process

•  Process reads data with read() system call
•  Queues denote scheduling and priority

level boundaries
17

Queues are scheduling and priority level
boundaries
Minimizing work in ISR reduces service latency
for other device I/O interrupts

Interrupt-Driven Networking,
UNIX Style

18

receive ISR

IP forwarding/reception
software interrupt

transmit complete ISR

in
cr

ea
si

n
g

 p
ri

o
ri

ty
 le

ve
l

user
kernel

application (e.g., firewall)

output queue input queue

socket
buffer

socket
buffer

Interrupt-Driven Networking,
UNIX Style

19

receive ISR

IP forwarding/reception
software interrupt

transmit complete ISR

in
cr

ea
si

n
g

 p
ri

o
ri

ty
 le

ve
l

user
kernel

application (e.g., firewall)

output queue input queue

socket
buffer

socket
buffer

Design prioritizes packet reception above all else
Original motivation: small buffers on network
interfaces (no longer a concern)

Interrupt-Driven Networking,
UNIX Style

20

receive ISR

IP forwarding/reception
software interrupt

in
cr

ea
si

n
g

 p
ri

o
ri

ty
 le

ve
l

user
kernel

application (e.g., firewall)

output queue input queue

socket
buffer

socket
buffer

How will this system behave as packet receive rate
increases—what will output packet rate do?

transmit complete ISR

Receive Livelock Pathologies

•  As input rate increases beyond maximum
loss-free receive rate, output rate decreases

•  System wastes CPU preparing arriving
packets for queue, all of which dropped

•  For input burst of packets, first packet not
delivered to user level until whole burst put
on queue (e.g., leaves NFS server disk idle!)

•  In systems where transmit lower-priority than
receive, transmit starves

21

Livelock Avoidance Technique 1:
Minimize Receive Interrupts

•  Goal: limit the receive interrupt rate
•  Receive ISR:

– sets flag indicating this network interface has
received one or more packets

– schedules kernel thread that polls network
interfaces for received packets

– does not re-enable receive interrupts

•  That’s it! Set flag, schedule kernel thread,
and return, leaving receive interrupts
disabled.

22

Livelock Avoidance Technique 2:
Kernel Polling Thread

•  When scheduled, checks all network
interfaces’ “packets received” flags

•  For such interfaces:
–  process packet all the way through kernel

protocol stack (IP/forwarding/UDP/TCP), ending
with interface output queue or socket buffer to
application

– maximum quota on packets processed for same
interface on one invocation for fairness

–  round-robins among interfaces and between
transmit and receive

– Re-enable interface’s receive interrupts only when
no pending packets at that interface

23

Livelock Avoidance Technique 2:
Kernel Polling Thread

•  When scheduled, checks all network
interfaces’ “packets received” flags

•  For such interfaces:
–  process packet all the way through kernel

protocol stack (IP/forwarding/UDP/TCP), ending
with interface output queue or socket buffer to
application

– maximum quota on packets processed for same
interface on one invocation for fairness

–  round-robins among interfaces and between
transmit and receive

– Re-enable interface’s receive interrupts only when
no pending packets at that interface

24

Under overload, where do packets go?
Dropped by network interface card when buffering
exhausted (either in card, or in host RAM), at no
CPU cost!

Performance Evaluation:
Techniques 1 and 2

•  No screend firewall
•  Without quotas for input processing, big

trouble! (Why?)
25

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

6000

1000

2000

3000

4000

5000

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/s

ec
)

Unmodified
No polling
Polling (quota = 5)
Polling (no quota)

Figure 6-3: Forwarding performance of modified kernel, without using screend

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

3000

500

1000

1500

2000

2500

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/s

ec
)

Unmodified
Polling, no feedback
Polling w/feedback

Figure 6-4: Forwarding performance of modified kernel, with screend

unmodified kernel. The problem is that, because some tuning might help. We also set a timeout (ar-
screend runs in user mode, the kernel must queue bitrarily chosen as one clock tick, or about 1 msec)
packets for delivery to screend. When the system is after which input is re-enabled, in case the screend
overloaded, this queue fills up and packets are program is hung, so that packets for other consumers
dropped. screend never gets a chance to run to drain are not dropped indefinitely.
this queue, because the system devotes its cycles to The same queue-state feedback technique could
handling input packets. be applied to other queues in the system, such as

To resolve this problem, we detect when the interface output queues, packet filter queues (for use
screening queue becomes full and inhibit further in- in network monitoring) [9, 8], etc. The feedback
put processing (and input interrupts) until more queue policies for these queues would be more complex,
space is available. The result is shown with the gray since it might be difficult to determine if input
square marks in figure 6-4: no livelock, and much processing load was actually preventing progress at
improved peak throughput. Feedback from the queue these queues. Since the screend program is typically
state means that the system properly allocates CPU run as the only application on a system, however, a
resources to move packets all the way through the full screening queue is an unequivocal signal that too
system, instead of dropping them at an intermediate many packets are arriving.
point.

In these experiments, the polling quota was 10 6.6.2. Choice of packet-count quota
packets, the screening queue was limited to 32 pack- To avoid livelock in the non-screend configura-
ets, and we inhibited input processing when the tion, we had to set a quota on the number of packets
queue was 75% full. Input processing is re-enabled processed per callback, so we investigated how sys-
when the screening queue becomes 25% full. We tem throughput changes as the quota is varied.
chose these high and low water marks arbitrarily, and Figure 6-5 shows the results; smaller quotas work

What about screend?

•  User-level application still cannot run under
heavy receive load!

•  Technique 3: disable receive interrupts when
queue to user application fills

26

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

6000

1000

2000

3000

4000

5000

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/s

ec
)

Unmodified
No polling
Polling (quota = 5)
Polling (no quota)

Figure 6-3: Forwarding performance of modified kernel, without using screend

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

3000

500

1000

1500

2000

2500

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/s

ec
)

Unmodified
Polling, no feedback
Polling w/feedback

Figure 6-4: Forwarding performance of modified kernel, with screend

unmodified kernel. The problem is that, because some tuning might help. We also set a timeout (ar-
screend runs in user mode, the kernel must queue bitrarily chosen as one clock tick, or about 1 msec)
packets for delivery to screend. When the system is after which input is re-enabled, in case the screend
overloaded, this queue fills up and packets are program is hung, so that packets for other consumers
dropped. screend never gets a chance to run to drain are not dropped indefinitely.
this queue, because the system devotes its cycles to The same queue-state feedback technique could
handling input packets. be applied to other queues in the system, such as

To resolve this problem, we detect when the interface output queues, packet filter queues (for use
screening queue becomes full and inhibit further in- in network monitoring) [9, 8], etc. The feedback
put processing (and input interrupts) until more queue policies for these queues would be more complex,
space is available. The result is shown with the gray since it might be difficult to determine if input
square marks in figure 6-4: no livelock, and much processing load was actually preventing progress at
improved peak throughput. Feedback from the queue these queues. Since the screend program is typically
state means that the system properly allocates CPU run as the only application on a system, however, a
resources to move packets all the way through the full screening queue is an unequivocal signal that too
system, instead of dropping them at an intermediate many packets are arriving.
point.

In these experiments, the polling quota was 10 6.6.2. Choice of packet-count quota
packets, the screening queue was limited to 32 pack- To avoid livelock in the non-screend configura-
ets, and we inhibited input processing when the tion, we had to set a quota on the number of packets
queue was 75% full. Input processing is re-enabled processed per callback, so we investigated how sys-
when the screening queue becomes 25% full. We tem throughput changes as the quota is varied.
chose these high and low water marks arbitrarily, and Figure 6-5 shows the results; smaller quotas work

Receive Livelock: Summary

•  Scheduling vital to performance of a busy
server
– may be implicit (e.g., interrupts), not explicit

(e.g., OS scheduler)
•  Understanding cross-layer behavior vital to

finding performance limitations and
designing for high performance

•  General lessons:
– Don’t discard data after doing work on it
– Poll while busy, interrupt while lightly loaded

27

