
User Authentication and
Cryptographic Primitives

Brad Karp
UCL Computer Science

CS GZ03 / M030
17th November, 2010

2

Outline

•  Authenticating users
–  Local users: hashed passwords
–  Remote users: s/key
–  Unexpected covert channel: the Tenex password-

guessing attack
•  Symmetric-key-cryptography
•  Public-key cryptography usage model
•  RSA algorithm for public-key cryptography

–  Number theory background
–  Algorithm definition

3

Dictionary Attack on Hashed Password
Databases

•  Suppose hacker obtains copy of password file
(until recently, world-readable on UNIX)

•  Compute H(x) for 50K common words
•  String compare resulting hashed words against

passwords in file
•  Learn all users’ passwords that are

common English words after only 50K
computations of H(x)!

•  Same hashed dictionary works on all
password files in world!

4

Salted Password Hashes

•  Generate a random string of bytes, r
•  For user password x, store [H(r,x), r] in

password file
•  Result: same password produces different result

on every machine
–  So must see password file before can hash dictionary
–  …and single hashed dictionary won’t work for multiple

hosts

•  Modern UNIX: password hashes salted; hashed
password database readable only by root

5

Salted Password Hashes

•  Generate a random string of bytes, r
•  For user password x, store [H(r,x), r] in

password file
•  Result: same password produces different result

on every machine
–  So must see password file before can hash dictionary
–  …and single hashed dictionary won’t work for multiple

hosts

•  Modern UNIX: password hashes salted; hashed
password database readable only by root

Dictionary attack still possible after attacker
sees password file!
Users should pick passwords that aren’t close
to dictionary words.

6

Tenex Password Attack:
An Information Leak

•  Tenex OS stored directory passwords in cleartext
•  OS supported system call:

–  pw_validate(directory, pw)

•  Implementation simply compared pw to stored
password in directory, char by char

•  Clever attack:
–  Make pw span two VM pages, put 1st char of guess in

first page, rest of guess in second page
–  See whether get a page fault—if not, try next value

for 1st char, &c.; if so, first char correct!
–  Now position 2nd char of guess at end of 1st page, &c.
–  Result: guess password in time linear in length!

7

Tenex Password Attack:
An Information Leak

•  Tenex OS stored directory passwords in cleartext
•  OS supported system call:

–  pw_validate(directory, pw)

•  Implementation simply compared pw to stored
password in directory, char by char

•  Clever attack:
–  Make pw span two VM pages, put 1st char of guess in

first page, rest of guess in second page
–  See whether get a page fault—if not, try next value

for 1st char, &c.; if so, first char correct!
–  Now position 2nd char of guess at end of 1st page, &c.
–  Result: guess password in time linear in length!

Lessons:
Don’t store passwords in cleartext.
Information leaks are real, and can be
extremely difficult to find and eliminate.

8

Remote User Authentication

•  Consider the case where Alice wants to log in
remotely, across LAN or WAN from server

•  Suppose network links can be eavesdropped by
adversary, Eve

•  Want scheme immune to replay: if Eve
overhears messages, shouldn’t be able to log in
as Alice by repeating them to server

•  Clear non-solutions:
–  Alice logs in by sending {alice, password}
–  Alice logs in by sending {alice, H(password)}

9

Remote User Authentication (2)

•  Desirable properties:
– Message from Alice must change

unpredictably at each login
– Message from Alice must be verifiable at

server as matching secret value known only to
Alice

•  Can we achieve these properties using
only a cryptographic hash function?

10

Remote User Authentication: s/key

•  Denote by Hn(x) n successive applications of
cryptographic hash function H() to x
–  i.e., H3(x) = H(H(H(x)))

•  Store in server’s user database:
alice:99:H99(password)

•  At first login, Alice sends:
{alice, H98(password)}

•  Server then updates its database to contain:
alice:98:H98(password)

•  At next login, Alice sends:
{alice, H97(password)}
–  and so on…

11

Properties of s/key

•  Just as with any hashed password
database, Alice must store her secret on
the server securely (best if physically at
server’s console)

•  Alice must choose total number of logins
at time of storing secret

•  When logins all “used”, must store new
secret on server securely again

12

Secrecy through Symmetric Encryption

•  Two functions: E() encrypts, D() decrypts
•  Parties share secret key K
•  For message M:

– E(K, M) C
– D(K, C) M

•  M is plaintext; C is ciphertext
•  Goal: attacker cannot derive M from C

without K

13

Idealized Symmetric Encryption:
One-Time Pad

•  Secretly share a truly random bit string P
at sender and receiver

•  Define as bit-wise XOR
•  C = E(M) = M P
•  M = D(C) = C P
•  Use bits of P only once; never use them

again!

14

Stream Ciphers:
Pseudorandom Pads

•  Generate pseudorandom bit sequence (stream)
at sender and receiver from short key

•  Encrypt and decrypt by XOR’ing message with
sequence, as with one-time pad

•  Most widely used stream cipher: RC4
•  Again, never, ever re-use bits from

pseudorandom sequence!
•  What’s wrong with reusing the stream?

–  Alice Server: c1 = E(s, “Visa card number”)
–  Server Alice: c2 = E(s, “Transaction confirmed”)
–  Suppose Eve hears both messages
–  Eve can compute:

m = c1 c2 “Transaction confirmed”

15

Symmetric Encryption: Block Ciphers

•  Divide plaintext into fixed-size blocks
(typically 64 or 128 bits)

•  Block cipher maps each plaintext block to
same-length ciphertext block

•  Best today to use AES (others include
Blowfish, DES, …)

•  Of course, message of arbitrary length;
how to encrypt message of more than one
block?

16

Using Block Ciphers: ECB Mode

•  Electronic Code Book method
•  Divide message M into blocks of cipher’s

block size
•  Simply encrypt each block individually

using the cipher
•  Send each encrypted block to receiver
•  Presume cipher provides secrecy, so

attacker cannot decrypt any block
•  Does ECB mode provide secrecy?

17

Avoid ECB Mode!

•  ECB mode does not provide robust secrecy!
•  What if there are repeated blocks in the

plaintext? Repeated as-is in ciphertext!
•  What if sending sparse file, with long runs of

zeroes? Non-zero regions obvious!
•  WW II U-Boat example (Bob Morris):

–  Each day at same time, when no news, send
encrypted message: “Nichts zu melden.”

–  When there’s news, send the news at that time.
–  Obvious when there’s news
–  Many, many ciphertexts of same known plaintext

made available to adversary for cryptanalysis—a
worry even if encryptions of same plaintext produce
different ciphertexts!

18

Using Block Ciphers: CBC Mode

•  Better plan: make encryptions of successive
blocks depend on one another, and initialization
vector known to receiver

19

Integrity with Symmetric Crypto:
Message Authentication Codes

•  How does receiver know if message modified en
route?

•  Message Authentication Code:
–  Sender and receiver share secret key K
–  On message M, v = MAC(K, M)
–  Attacker cannot produce valid {M, v} without K

•  Append MAC to message for tamper-resistance:
–  Sender sends {M, MAC(K, M)}
–  M could be ciphertext, M = E(K’, m)
–  Receiver of {M, v} can verify that v = MAC(K, M)

•  Beware replay attacks—replay of prior {M, v} by
Eve!

20

HMAC: A MAC Based on Cryptographic
Hash Functions

•  HMAC(K, M) =
 H(K opad . H(K ipad . M))

•  where:
–  . denotes string concatenation
– opad = 64 repetitions of 0x36
–  ipad = 64 repetitions of 0x5c
– H() is a cryptographic hash function, like

SHA-256
•  Fixed-size output, even for long messages

21

Public-Key Encryption: Interface

•  Two keys:
–  Public key: K, published for all to see
–  Private (or secret) key: K-1, kept secret

•  Encryption: E(K, M) {M}K

•  Decryption: D(K-1, {M}K) M
•  Provides secrecy, like symmetric encryption:

–  Can’t derive M from {M}K without knowing K-1

•  Same public key used by all to encrypt all
messages to same recipient
–  Can’t derive K-1 from K

22

Number Theory Background:
Modular Arithmetic Primer (1)

•  Recall the “mod” operator: returns
remainder left after dividing one integer
by another, the modulus
– e.g., 15 mod 6 = 3

•  That is:
a mod n = r
 which just means

a = kn + r for some integers k and r
•  Note that 0 <= r < n

23

Modular Arithmetic Primer (2)

•  In modular arithmetic, constrain range of
integers to be only the residues [0, n-1], for
modulus n
–  e.g., (12 + 13) mod 24 = 1
–  We may also write

•  Modular arithmetic retains familiar properties:
commutative, associative, distributive

•  Same results whether mod taken at each
arithmetic operation, or only at end, e.g.:
(a + b) mod n = ((a mod n) + (b mod n)) mod n
(ab) mod n = (a mod n)(b mod n) mod n

€

12 +13 ≡1 (mod 24)

24

Modular Arithmetic: Advantages

•  Limits precision required: working mod n,
where n is k bits long, any single
arithmetic operation yields at most 2k bits
– …so results of even seemingly expensive ops,

like exponentiation (ax) fit in same number of
bits as original operand(s)

– Lower precision means faster arithmetic
•  Some operations in modular arithmetic are

computationally very difficult:
– e.g., computing discrete logarithms:
 find integer x s.t.

25

Modular Arithmetic: Advantages

•  Limits precision required: working mod n,
where n is k bits long, any single
arithmetic operation yields at most 2k bits
– …so results of even seemingly expensive ops,

like exponentiation (ax) fit in same number of
bits as original operand(s)

– Lower precision means faster arithmetic
•  Some operations in modular arithmetic are

computationally very difficult:
– e.g., computing discrete logarithms:
 find integer x s.t.

Cryptography leverages “difficult”
operations; want reversing encryption
without key to be computationally
intractable!

26

Modular Arithmetic: Inverses (1)

•  In real arithmetic, every integer has a
multiplicative inverse—its reciprocal—and
their product is 1
– e.g., 7x = 1 x = (1/7)

•  What does an inverse in modular
arithmetic (say, mod 11) look like?

–  that is, 7x = 11k + 1 for some x and k
– so x = 8 (where k = 5)

27

Aside: Prime Numbers

•  Recall: prime number is integer > 1 that is
evenly divisible only by 1 and itself

•  Two integers a and b are relatively prime
if they share no common factors but 1;
i.e., if gcd(a, b) = 1

•  There are infinitely many primes
•  Large primes (512 bits and longer) figure

prominently in public-key cryptography

28

Modular Arithmetic: Inverses (2)

•  In general, finding modular inverse means
finding x s.t.

•  Does modular inverse always exist?
–  No! Consider

•  In general, when a and n are relatively prime,
modular inverse x exists and is unique

•  When a and n not relatively prime, x doesn’t
exist

•  When n prime, all of [1…n-1] relatively prime to
n, and have an inverse in that range

29

Modular Arithmetic: Inverses (2)

•  In general, finding modular inverse means
finding x s.t.

•  Does modular inverse always exist?
–  No! Consider

•  In general, when a and n are relatively prime,
modular inverse x exists and is unique

•  When a and n not relatively prime, x doesn’t
exist

•  When n prime, all of [1…n-1] relatively prime to
n, and have an inverse in that range

Algorithm to find modular inverse: extended
Euclidean Algorithm. Tractable; requires O
(log n) divisions.

30

Euler’s Phi Function: Efficient Modular
Inverses on Relative Primes

•  φ(n) = number of integers < n that are relatively
prime to n

•  If n prime, φ(n) = n-1
•  If n=pq, where p and q prime:
φ(n) = (p-1)(q-1)

•  If a and n relatively prime, Euler’s generalization
of Fermat’s little theorem:

 aφ(n) mod n = 1
•  and thus, to find inverse x s.t. x = a-1 mod n:

 x = aφ(n)-1 mod n

31

RSA Algorithm (1)

•  [Rivest, Shamir, Adleman, 1978]
•  Recall that public-key cryptosystems use

two keys per user:
– K, the public key, made available to all
– K-1, the private key, kept secret by user

32

RSA Algorithm (2)

•  Choose two random, large primes, p and
q, of equal length, and compute n=pq

•  Randomly choose encryption key e, s.t. e
and (p-1)(q-1) are relatively prime

•  Use extended Euclidean algorithm to
compute d, s.t. d = e-1 mod ((p-1)(q-1))

•  Public key: K = (e, n)
•  Private key: K-1 = d
•  Discard p and q

33

RSA Algorithm (3)

•  Encryption:
– Divide message M into blocks mi, each shorter

than n
– Compute ciphertext blocks ci with:

ci = mi
e mod n

•  Decryption
– Recover plaintext blocks mi with:

mi = ci
d mod n

34

Why Does RSA Decryption Recover
Original Plaintext?

•  Observe that ci
d = (mi

e)d = mi
ed

•  Note that
because e and d are inverses mod (p-1)(q-1)

•  So:
 , and thus ed = k(p-1)+1
 , and thus ed = h(q-1)+1

•  Consider case where mi and p are relatively prime:
 by Euler’s generalization of Fermat’s
little theorem

–  so
•  And case where mi a multiple of p:

•  Thus in all cases,

€

ed≡1 (mod (p -1)(q-1))

€

ed≡1 (mod (p -1))

€

ed≡1 (mod (q-1))

€

mi
ed =mi

k(p-1)+1 =mi(mi
(p-1))k ≡mi (mod p)

€

mi
(p-1) ≡1 (mod p)

€

mi
ed =0ed =0 ≡mi (mod p)

€

mi
ed ≡mi (mod p)

Why Does RSA Decryption Recover
Original Plaintext? (2)

•  Similarly,
•  Now:

•  Because p, q both prime and distinct:

•  So

35

€

mi
ed ≡mi (mod q)

€

mi
ed -mi ≡ 0 (mod p)

€

mi
ed -mi ≡ 0 (mod q)

€

mi
ed -mi ≡ 0 (mod (pq))

€

ci
d =mi

ed ≡mi (mod n)

