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Outline 

•  Authenticating users 
–  Local users: hashed passwords 
–  Remote users: s/key 
–  Unexpected covert channel: the Tenex password-

guessing attack 
•  Symmetric-key-cryptography 
•  Public-key cryptography usage model 
•  RSA algorithm for public-key cryptography 

–  Number theory background 
–  Algorithm definition 
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Dictionary Attack on Hashed Password 
Databases 

•  Suppose hacker obtains copy of password file 
(until recently, world-readable on UNIX) 

•  Compute H(x) for 50K common words 
•  String compare resulting hashed words against 

passwords in file 
•  Learn all users’ passwords that are 

common English words after only 50K 
computations of H(x)! 

•  Same hashed dictionary works on all 
password files in world! 
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Salted Password Hashes 

•  Generate a random string of bytes, r 
•  For user password x, store [H(r,x), r] in 

password file 
•  Result: same password produces different result 

on every machine 
–  So must see password file before can hash dictionary 
–  …and single hashed dictionary won’t work for multiple 

hosts 

•  Modern UNIX: password hashes salted; hashed 
password database readable only by root 
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Salted Password Hashes 

•  Generate a random string of bytes, r 
•  For user password x, store [H(r,x), r] in 

password file 
•  Result: same password produces different result 

on every machine 
–  So must see password file before can hash dictionary 
–  …and single hashed dictionary won’t work for multiple 

hosts 

•  Modern UNIX: password hashes salted; hashed 
password database readable only by root 

Dictionary attack still possible after attacker 
sees password file! 
Users should pick passwords that aren’t close 
to dictionary words. 
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Tenex Password Attack: 
An Information Leak 

•  Tenex OS stored directory passwords in cleartext 
•  OS supported system call: 

–  pw_validate(directory, pw) 

•  Implementation simply compared pw to stored 
password in directory, char by char 

•  Clever attack: 
–  Make pw span two VM pages, put 1st char of guess in 

first page, rest of guess in second page 
–  See whether get a page fault—if not, try next value 

for 1st char, &c.; if so, first char correct! 
–  Now position 2nd char of guess at end of 1st page, &c. 
–  Result: guess password in time linear in length! 
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Tenex Password Attack: 
An Information Leak 

•  Tenex OS stored directory passwords in cleartext 
•  OS supported system call: 

–  pw_validate(directory, pw) 

•  Implementation simply compared pw to stored 
password in directory, char by char 

•  Clever attack: 
–  Make pw span two VM pages, put 1st char of guess in 

first page, rest of guess in second page 
–  See whether get a page fault—if not, try next value 

for 1st char, &c.; if so, first char correct! 
–  Now position 2nd char of guess at end of 1st page, &c. 
–  Result: guess password in time linear in length! 

Lessons: 
Don’t store passwords in cleartext. 
Information leaks are real, and can be 
extremely difficult to find and eliminate. 
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Remote User Authentication 

•  Consider the case where Alice wants to log in 
remotely, across LAN or WAN from server 

•  Suppose network links can be eavesdropped by 
adversary, Eve 

•  Want scheme immune to replay: if Eve 
overhears messages, shouldn’t be able to log in 
as Alice by repeating them to server 

•  Clear non-solutions: 
–  Alice logs in by sending {alice, password} 
–  Alice logs in by sending {alice, H(password)} 
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Remote User Authentication (2) 

•  Desirable properties: 
– Message from Alice must change 

unpredictably at each login 
– Message from Alice must be verifiable at 

server as matching secret value known only to 
Alice 

•  Can we achieve these properties using 
only a cryptographic hash function? 



10 

Remote User Authentication: s/key 

•  Denote by Hn(x) n successive applications of 
cryptographic hash function H() to x 
–  i.e., H3(x) = H(H(H(x))) 

•  Store in server’s user database: 
alice:99:H99(password) 

•  At first login, Alice sends: 
{alice, H98(password)} 

•  Server then updates its database to contain: 
alice:98:H98(password) 

•  At next login, Alice sends: 
{alice, H97(password)} 
–  and so on… 
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Properties of s/key 

•  Just as with any hashed password 
database, Alice must store her secret on 
the server securely (best if physically at 
server’s console) 

•  Alice must choose total number of logins 
at time of storing secret 

•  When logins all “used”, must store new 
secret on server securely again 
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Secrecy through Symmetric Encryption 

•  Two functions: E() encrypts, D() decrypts 
•  Parties share secret key K 
•  For message M: 

– E(K, M)  C 
– D(K, C)  M 

•  M is plaintext; C is ciphertext 
•  Goal: attacker cannot derive M from C 

without K 
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Idealized Symmetric Encryption: 
One-Time Pad 

•  Secretly share a truly random bit string P 
at sender and receiver 

•  Define     as bit-wise XOR 
•  C = E(M) = M    P 
•  M = D(C) = C    P 
•  Use bits of P only once; never use them 

again! 
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Stream Ciphers: 
Pseudorandom Pads 

•  Generate pseudorandom bit sequence (stream) 
at sender and receiver from short key 

•  Encrypt and decrypt by XOR’ing message with 
sequence, as with one-time pad 

•  Most widely used stream cipher: RC4 
•  Again, never, ever re-use bits from 

pseudorandom sequence! 
•  What’s wrong with reusing the stream? 

–  Alice  Server: c1 = E(s, “Visa card number”) 
–  Server  Alice: c2 = E(s, “Transaction confirmed”) 
–  Suppose Eve hears both messages 
–  Eve can compute: 

m = c1   c2   “Transaction confirmed” 
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Symmetric Encryption: Block Ciphers 

•  Divide plaintext into fixed-size blocks 
(typically 64 or 128 bits) 

•  Block cipher maps each plaintext block to 
same-length ciphertext block 

•  Best today to use AES (others include 
Blowfish, DES, …) 

•  Of course, message of arbitrary length; 
how to encrypt message of more than one 
block? 
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Using Block Ciphers: ECB Mode 

•  Electronic Code Book method 
•  Divide message M into blocks of cipher’s 

block size 
•  Simply encrypt each block individually 

using the cipher 
•  Send each encrypted block to receiver 
•  Presume cipher provides secrecy, so 

attacker cannot decrypt any block 
•  Does ECB mode provide secrecy? 
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Avoid ECB Mode! 

•  ECB mode does not provide robust secrecy! 
•  What if there are repeated blocks in the 

plaintext? Repeated as-is in ciphertext! 
•  What if sending sparse file, with long runs of 

zeroes? Non-zero regions obvious! 
•  WW II U-Boat example (Bob Morris): 

–  Each day at same time, when no news, send 
encrypted message: “Nichts zu melden.” 

–  When there’s news, send the news at that time. 
–  Obvious when there’s news 
–  Many, many ciphertexts of same known plaintext 

made available to adversary for cryptanalysis—a 
worry even if encryptions of same plaintext produce 
different ciphertexts! 
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Using Block Ciphers: CBC Mode 

•  Better plan: make encryptions of successive 
blocks depend on one another, and initialization 
vector known to receiver 
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Integrity with Symmetric Crypto: 
Message Authentication Codes 

•  How does receiver know if message modified en 
route? 

•  Message Authentication Code: 
–  Sender and receiver share secret key K 
–  On message M, v = MAC(K, M) 
–  Attacker cannot produce valid {M, v} without K 

•  Append MAC to message for tamper-resistance: 
–  Sender sends {M, MAC(K, M)} 
–  M could be ciphertext, M = E(K’, m) 
–  Receiver of {M, v} can verify that v = MAC(K, M) 

•  Beware replay attacks—replay of prior {M, v} by 
Eve! 
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HMAC: A MAC Based on Cryptographic 
Hash Functions 

•  HMAC(K, M) = 
  H(K   opad . H(K   ipad . M)) 

•  where: 
–  . denotes string concatenation 
– opad = 64 repetitions of 0x36 
–  ipad = 64 repetitions of 0x5c 
– H() is a cryptographic hash function, like 

SHA-256 
•  Fixed-size output, even for long messages 
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Public-Key Encryption: Interface 

•  Two keys: 
–  Public key: K, published for all to see 
–  Private (or secret) key: K-1, kept secret 

•  Encryption: E(K, M)  {M}K 

•  Decryption: D(K-1, {M}K)  M 
•  Provides secrecy, like symmetric encryption: 

–  Can’t derive M from {M}K without knowing K-1 

•  Same public key used by all to encrypt all 
messages to same recipient 
–  Can’t derive K-1 from K 
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Number Theory Background: 
Modular Arithmetic Primer (1) 

•  Recall the “mod” operator: returns 
remainder left after dividing one integer 
by another, the modulus 
– e.g., 15 mod 6 = 3 

•  That is: 
a mod n = r 
 which just means 

a = kn + r  for some integers k and r 
•  Note that 0 <= r < n 
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Modular Arithmetic Primer (2) 

•  In modular arithmetic, constrain range of 
integers to be only the residues [0, n-1], for 
modulus n 
–  e.g., (12 + 13) mod 24 = 1 
–  We may also write 

•  Modular arithmetic retains familiar properties: 
commutative, associative, distributive 

•  Same results whether mod taken at each 
arithmetic operation, or only at end, e.g.: 
(a + b) mod n = ((a mod n) + (b mod n)) mod n 
(ab) mod n = (a mod n)(b mod n) mod n 

  

€ 

12 +13 ≡1 (mod 24)
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Modular Arithmetic: Advantages 

•  Limits precision required: working mod n, 
where n is k bits long, any single 
arithmetic operation yields at most 2k bits 
– …so results of even seemingly expensive ops, 

like exponentiation (ax) fit in same number of 
bits as original operand(s) 

– Lower precision means faster arithmetic 
•  Some operations in modular arithmetic are 

computationally very difficult: 
– e.g., computing discrete logarithms: 
 find integer x s.t. 
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Modular Arithmetic: Advantages 

•  Limits precision required: working mod n, 
where n is k bits long, any single 
arithmetic operation yields at most 2k bits 
– …so results of even seemingly expensive ops, 

like exponentiation (ax) fit in same number of 
bits as original operand(s) 

– Lower precision means faster arithmetic 
•  Some operations in modular arithmetic are 

computationally very difficult: 
– e.g., computing discrete logarithms: 
 find integer x s.t. 

Cryptography leverages “difficult” 
operations; want reversing encryption 
without key to be computationally 
intractable! 
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Modular Arithmetic: Inverses (1) 

•  In real arithmetic, every integer has a 
multiplicative inverse—its reciprocal—and 
their product is 1 
– e.g., 7x = 1  x = (1/7) 

•  What does an inverse in modular 
arithmetic (say, mod 11) look like? 

–  that is, 7x = 11k + 1 for some x and k 
– so x = 8 (where k = 5) 
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Aside: Prime Numbers 

•  Recall: prime number is integer > 1 that is 
evenly divisible only by 1 and itself 

•  Two integers a and b are relatively prime 
if they share no common factors but 1; 
i.e., if gcd(a, b) = 1 

•  There are infinitely many primes 
•  Large primes (512 bits and longer) figure 

prominently in public-key cryptography 
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Modular Arithmetic: Inverses (2) 

•  In general, finding modular inverse means 
finding x s.t. 

•  Does modular inverse always exist? 
–  No! Consider 

•  In general, when a and n are relatively prime, 
modular inverse x exists and is unique 

•  When a and n not relatively prime, x doesn’t 
exist 

•  When n prime, all of [1…n-1] relatively prime to 
n, and have an inverse in that range 
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Modular Arithmetic: Inverses (2) 

•  In general, finding modular inverse means 
finding x s.t. 

•  Does modular inverse always exist? 
–  No! Consider 

•  In general, when a and n are relatively prime, 
modular inverse x exists and is unique 

•  When a and n not relatively prime, x doesn’t 
exist 

•  When n prime, all of [1…n-1] relatively prime to 
n, and have an inverse in that range 

Algorithm to find modular inverse: extended 
Euclidean Algorithm. Tractable; requires O
(log n) divisions. 



30 

Euler’s Phi Function: Efficient Modular 
Inverses on Relative Primes 

•  φ(n) = number of integers < n that are relatively 
prime to n 

•  If n prime, φ(n) = n-1 
•  If n=pq, where p and q prime: 
φ(n) = (p-1)(q-1) 

•  If a and n relatively prime, Euler’s generalization 
of Fermat’s little theorem: 

 aφ(n) mod n = 1 
•  and thus, to find inverse x s.t. x = a-1 mod n: 

 x = aφ(n)-1 mod n 
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RSA Algorithm (1) 

•  [Rivest, Shamir, Adleman, 1978] 
•  Recall that public-key cryptosystems use 

two keys per user: 
– K, the public key, made available to all 
– K-1, the private key, kept secret by user 
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RSA Algorithm (2) 

•  Choose two random, large primes, p and 
q, of equal length, and compute n=pq 

•  Randomly choose encryption key e, s.t. e 
and (p-1)(q-1) are relatively prime 

•  Use extended Euclidean algorithm to 
compute d, s.t. d = e-1 mod ((p-1)(q-1)) 

•  Public key: K = (e, n) 
•  Private key: K-1 = d 
•  Discard p and q 
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RSA Algorithm (3) 

•  Encryption: 
– Divide message M into blocks mi, each shorter 

than n 
– Compute ciphertext blocks ci with: 

ci = mi
e mod n 

•  Decryption 
– Recover plaintext blocks mi with: 

mi = ci
d mod n 
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Why Does RSA Decryption Recover 
Original Plaintext? 

•  Observe that ci
d = (mi

e)d = mi
ed 

•  Note that 
because e and d are inverses mod (p-1)(q-1) 

•  So: 
                           , and thus ed = k(p-1)+1 
                           , and thus ed = h(q-1)+1 

•  Consider case where mi and p are relatively prime: 
                         by Euler’s generalization of Fermat’s 
little theorem 

–  so 
•  And case where mi a multiple of p: 

•  Thus in all cases,  

  

€ 

ed≡1 (mod (p -1)(q-1))

  

€ 

ed≡1 (mod (p -1))
  

€ 

ed≡1 (mod (q-1))

  

€ 

mi
ed =mi

k(p-1)+1 =mi(mi
(p-1))k ≡mi (mod p)

  

€ 

mi
(p-1) ≡1 (mod p)

  

€ 

mi
ed =0ed =0 ≡mi (mod p)

  

€ 

mi
ed ≡mi (mod p)



Why Does RSA Decryption Recover 
Original Plaintext? (2) 

•  Similarly,  
•  Now: 

•  Because p, q both prime and distinct: 

•  So  
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€ 

mi
ed ≡mi (mod q)

  

€ 

mi
ed -mi ≡ 0 (mod p)

  

€ 

mi
ed -mi ≡ 0 (mod q)

  

€ 

mi
ed -mi ≡ 0 (mod (pq))

  

€ 

ci
d =mi

ed ≡mi (mod n)


