
Introduction to Security and
User Authentication

Brad Karp
UCL Computer Science

CS GZ03 / M030
17th November, 2010

2

Topics We’ll Cover

•  User login authentication (local and remote)
•  Cryptographic primitives, how to use them, and how not

to use them
•  Kerberos distributed authentication system
•  Secure Sockets Layer (SSL)/Transport Layer Security

(TLS) authentication and encryption system
•  TAOS: logic for reasoning formally about authentication
•  Software vulnerabilities and exploits
•  Exploit Defenses
•  Software Fault Isolation (SFI): containing untrusted code
•  OKWS: a least-privilege isolated web server for UNIX

3

A Simple Example

•  Suppose you place
an order with
Amazon

•  Goals:
– You get the item

you ordered
– Amazon gets

payment in the
amount you agreed
to pay on the
payment page

You

Internet

Amazon

Credit card
number

4

A Simple Example

•  Suppose you place
an order with
Amazon

•  Goals:
– You get the item

you ordered
– Amazon gets

payment in the
amount you agreed
to pay on the
payment page

You

Internet

Amazon

Credit card
number

How might this go wrong?
Let us count the ways…

5

Worries for Amazon Order

•  What if an eavesdropper taps Internet link?
–  Network cables usually not physically secure

•  What if someone has broken into Internet
router? (They’re just computers…)

•  How do you know you’re communicating with
Amazon?

•  How does Amazon know you are authorized to
use the credit card number you provide?

•  What if a dishonest Amazon employee learns my
credit card number?

•  What if Amazon sends me wrong book, in error

6

Worries for Amazon Order (2)

•  What if someone has broken into my
desktop PC? Or my file server?

•  Where did my web browser come from?
How about my OS?

•  What if my display or keyboard radiates a
signal that can be detected at some
distance?

7

Worries for Amazon Order (2)

•  What if someone has broken into my
desktop PC? Or my file server?

•  Where did my web browser come from?
How about my OS?

•  What if my display or keyboard radiates a
signal that can be detected at some
distance?

Fundamental security question:
“Whom or what am I trusting?”
Weakest item on list of answers determines
system security!

8

Whom or What Am I Trusting?

“They showed me a telephone, and said
they were worried about ‘the microphone.’
When I look at a telephone, I see one
high-fidelity microphone and one ‘low-
fidelity microphone.’”

“Most people call this a telephone cord. I
call it an antenna.”
– Bob Morris, Sr., former Chief Scientist of the

National Computer Security Center, NSA

9

Whom or What Am I Trusting? (2)

10

Example Secure System Design

•  Secure telephone line between FBI and CIA
•  Goal: only people in FBI and CIA buildings can learn

what’s said in calls
•  Plan:

–  Radiation-proof buildings
–  One entrance/exit per building
–  Armed guards at entrances
–  Guards check ID cards, record all people in/out
–  Pressurized, shielded cable between two buildings
–  No other cables allowed to leave buildings
–  Pass laws to punish people who reveal government secrets
–  Invite NSA to try to steal content of calls
–  Send dummy information, spy on KGB, see if they learn it

11

Perfect Security: An Unattainable Goal

•  Merely a question of how motivated adversary
is, and how much money he has

•  No individual technique perfect
–  Pressurized cable only raises cost for attacker
–  Can’t completely shield a building
–  People can be bribed, blackmailed

•  Could meet stated goal, but it could be
inappropriate
–  What if FBI, CIA allow in uncleared visitors?
–  What if employees go home and talk in sleep?

•  Solution: forbid employees from leaving the building…

12

Definitions

•  Security: techniques to control who can
access/modify system

•  Principal: unit of accountability in a system
(e.g., user)

•  Access control: techniques to restrict
operations to particular principals

•  Authentication: verification of identity of
principal making request

•  Authorization: granting of request to
principal

13

Attacks on Security

•  Violation of secrecy
–  Attacker reads data without authorization

•  Violation of integrity
–  Attacker modifies data without authorization
–  e.g., attacker modifies data on disk
–  e.g., attacker modifies network reply to “read file”

request

•  Denial of service
–  Attacker makes system unavailable to legitimate users
–  e.g., overload the system, or cause a deadlock
–  e.g., trigger security mechanism (wrong ATM PIN 3

times)

14

Building Secure Systems:
General Approach

•  Figure out what you want to protect, what it’s worth
•  Figure out which attacks you want to defend against
•  State goals and desired properties clearly

–  Not “impossible to break”
–  Better: “attack X on resource Y should cost $Z”

•  Structure system with two types of components:
–  Trusted: must operate as expected, or breach
–  Untrusted: subverted operation doesn’t lead to breach

•  Minimize size of trusted components
–  Maybe we should have built secure room, not building…

•  Analyze resulting system, monitor success

15

Security Is a Negative Goal

•  Ensure nothing happens without
authorization
– How do you reason about what a system will

not do?

•  First step: specify who authorized to do
what
–  In other words, specify a policy

16

Policy

•  Policy: goal security must achieve
–  Human intent—originates from outside system

•  Often talked about in terms of subjects and
objects
–  Subject: principal
–  Object: abstraction to which access requested (e.g.,

file, memory page, serial port)
–  Each object supports different kinds of access (e.g.,

read or write file, change permissions, …)

•  Access control: should operation be allowed?
–  What principal making request? (Authentication)
–  Is operation permitted to principal? (Authorization)

17

Access Control: Examples

•  Machine in locked room, not on network
–  Policy: only users with keys can access computer

•  Bank ATM card
–  Policy: only allowed to withdraw money present in

your account
–  Authentication: must have card and know PIN
–  Authorization: database tracks account balances

•  Private UNIX file (only owner can read)
–  Authentication: password to run software as user
–  Authorization: kernel checks file’s permission bits

•  Military classified data
–  If process reads “top-secret” data, cannot write

“secret” data

18

Next: User Authentication

•  How to use passwords to authenticate
users: at the console, and remotely, over
a network

•  Attacks against password-based
authentication schemes

•  Designing robust password-based
authentication schemes

19

Authentication of Local Users

•  Goal: only file’s owner can access file
•  UNIX authentication policy:

–  Each file has an owner principal: an integer user ID
–  Each file has associated owner permissions (read,

write, execute, &c.)
–  Each process runs with integer user ID; only can

access file as owner if matches file’s owner user ID
–  OS assigns user ID to user’s shell process at login

time, authenticated by username and password
–  Shell process creates new child processes with same

user ID
•  How does UNIX know the correspondence

among <username, user ID, password>, for all
users?

20

Straw Man:
Plaintext Password Database

•  Keep password database in a file, e.g.:
bkarp:3715:secretpw
mjh:4212:multicast

•  Passwords stored in file in plaintext
•  Make file readable only by privileged superuser

(root)
•  /bin/login program prompts for usernames

and passwords on console; runs as root, so can
read password database

•  How well does this scheme meet original goal?

21

Cryptographic Primitive:
Cryptographic Hash Function

•  Don’t want someone who sees the password
database to learn users’ passwords

•  Cryptographic hash function, y=H(x) such that:
–  H() is preimage-resistant: given y, and with

knowledge of H(), computationally infeasible to
recover x

–  H() is second-preimage-resistant: given y,
computationally infeasible to find x’≠x s.t. H(x)=H(x’)
=y

•  Widely used cryptographic hash functions:
–  MD-5: output is 128 bits, broken
–  SHA-1: output is 160 bits; on verge of being broken
–  SHA-256: output is 256 bits, best current practice

22

Better Plan:
Hashed Password Database

•  Keep password database in a file:
bkarp:3715:Xc8zOP0ZHJkp
mjh:4212:p6FsAtQl4cwi

•  Instead of password plaintext x, store H(x)
•  Make file readable by all (!)
•  One-wayness of H() means no one can

recover x from H(x), right?
– WRONG! Users choose memorable

passwords…

23

Insight: Counting Possible Passwords

•  If users pick random n-character passwords
using c possible characters, how many guesses
expected to guess one password?

 cn/2

e.g., 8 characters, each ~90 possibilities, 2.15 x 1015

•  Do users pick random passwords?
–  Of course not; very hard to remember
–  Common choice: word in native language

•  How many words in common use in modern
English?
–  50,000-70,000 (or far fewer, if you read Metro)

24

Dictionary Attack on Hashed Password
Databases

•  Suppose hacker obtains copy of password file
(until recently, world-readable on UNIX)

•  Compute H(x) for 50K common words
•  String compare resulting hashed words against

passwords in file
•  Learn all users’ passwords that are

common English words after only 50K
computations of H(x)!

•  Same hashed dictionary works on all
password files in world!

