
Distributed Systems and Security:
An Introduction

Brad Karp
UCL Computer Science

CS GZ03 / M030
5th October, 2009

2

Today’s Lecture

•  Administrivia
•  Overview of Distributed Systems

–  What are they?
–  Why build them?
–  Why are they hard to build well?

•  Operating Systems Background
•  Questionnaire

Course Staff and Office Hours

•  Instructor:
–  Brad Karp, MPEB 7.05, Tue 2 PM – 3 PM,

ext. 30406

•  Teaching Assistant:
–  Petr Marchenko, MPEB 7th floor lab,

hours TBA, ext. 30400

•  Office hours begin this week
•  Time reserved for answering your questions
•  Outside office hours, email to schedule

appointment
3

Meeting Times and Locations

•  Mondays 11 AM – 1 PM,
25 Gordon Square 107

•  Wednesdays 9 AM – 11 AM,
Watson Medawar LT

•  Lecture will run 90 minutes
•  Sometimes lecture will be followed by a 30-

minute discussion led by a TA (e.g., Q&A on
a coursework)

•  No lecture next week (12th, 14th October)
•  Reading week: 9th – 13th November,

no lecture!
4

5

Class Communication

•  Class web page
–  http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2009/
–  Detailed calendar, coursework, class policies,

announcements/corrections
–  Your responsibility: check page daily!

•  Public class mailing list:
gz03@<department’s domain>
–  Reaches all students in class and class staff
–  You must subscribe; follow instructions on class web

site
–  Use to discuss material from lecture, courseworks

(but not your solutions!)
–  Your responsibility: check email daily!

Class Communication (cont’d)

•  Staff mailing list:
gz03-staff@<department’s domain>
– Reaches staff only
– Use for more private questions, or questions

that reveal details of your coursework solution
– Please use this address for class-related

email, not staff individual email addresses;
any of us can reply, so faster response time

6

Readings, Lectures, and
Lecture Notes

•  Readings must be read before lecture;
lectures assume you have done so

•  Lecture notes will be posted to the class
web site just after lecture

•  Class calendar shows all reading
assignments day by day…

7

Readings

•  No textbook
•  Classic and recent research papers on real,

built distributed and secure systems
•  Available on class web page; print these

yourselves
•  All readings examinable
•  Research papers are dense and complex;

they are often challenging
–  Be prepared to read and re-read the papers
–  Come to lecture with questions, and/or use office

hours

8

Grading

•  Final grade components:
– One programming coursework: 10%
– One problem set coursework: 5%
– Final exam: 85%

9

Late Work Policy

•  N.B. that M030/GZ03 policy differs from that
for other CS classes!

•  For every day late or fraction thereof, including
weekend days, 10% of marks deducted

•  Each student receives budget of 3 late days for
entire term
–  Each late day “cancels” one day of lateness
–  Goal: give you flexibility, e.g., in case you can’t find a

bug, or encounter unexpected other snag
–  You choose how many late days to use when turning

in a coursework late
–  Must use whole late days—cannot use fractional ones!

10

Late Days (cont’d)

•  If submission more than 2 days late after
taking late days into account, zero marks

•  Programming courseworks turned in
online; may be submitted 24/7

•  Problem set courseworks turned in on
paper to CS 5th floor reception; can be
submitted M – F only
– Weekend days after deadline still count as

elapsed days
11

Late Days (cont’d)

•  If submission more than 2 days late after
taking late days into account, zero marks

•  Programming courseworks turned in
online; may be submitted 24/7

•  Problem set courseworks turned in on
paper to CS 5th floor reception; can be
submitted M – F only
– Weekend days after deadline still count as

elapsed days
12

Late days give you flexibility.
No other extensions given on coursework,
unless for unforeseeable, severely
extenuating circumstances!

Academic Honesty

•  All courseworks must be completed
individually

•  May discuss understanding of problem
statement, general sketch of approach

•  May not discuss details of solution
•  May not show your solution to others (this

year or in future years)
•  May not look at others’ solutions (this year

or from past years)
13

Academic Honesty (cont’d)

•  We use code comparison software
– Compares parse trees; immune to obfuscation
– Produces color-coded all-student-pairs code

comparisons

•  Don’t copy code—you will be caught!
•  Penalty for copying: automatic zero marks,

referral for disciplinary action by UCL
(usually leads to exclusion from all exams
at UCL)

14

15

Today’s Lecture

•  Administrivia
•  Overview of Distributed Systems

–  What are they?
–  Why build them?
–  Why are they hard to build well?

•  Operating Systems Background
•  Questionnaire

16

What Is a Distributed System?

•  Multiple computers (“machines,” “hosts,”
“boxes,” &c.)
– Each with CPU, memory, disk, network

interface
–  Interconnected by LAN or WAN (e.g.,

Internet)

•  Application runs across this dispersed
collection of networked hardware

•  But user sees single, unified system

17

What Is a Distributed System?
(Alternate Take)

“A distributed system is a system in which I
can’t do my work because some computer
that I’ve never even heard of has failed.”

–  Leslie Lamport, Microsoft Research (ex DEC)

18

Start Simple: Centralized System

•  Suppose you run Gmail
•  Workload:

–  Inbound email arrives; store on disk
– Users retrieve, delete their email

•  You run Gmail on one server with disk

Gmail
Server (PC)

Email
Sender

Email
Sender

Email
Sender

Email
Reader

Email
Reader

Email
Reader

19

Start Simple: Centralized System

•  Suppose you run Gmail
•  Workload:

–  Inbound email arrives; store on disk
– Users retrieve, delete their email

•  You run Gmail on one server with disk

Gmail
Server (PC)

Email
Sender

Email
Sender

Email
Sender

Email
Reader

Email
Reader

Email
Reader

What are shortcomings of this design?

20

Why Distribute?
 For Availability

•  Suppose Gmail server goes down, or network
between client and it goes down

•  No incoming mail delivered, no users can read
their inboxes

•  Fix: replicate the data on several servers
–  Increased chance some server will be reachable
–  Consistency? One server down when delete message,

then comes back up; message returns in inbox
–  Latency? Replicas should be far apart, so they fail

independently
–  Partition resilience? e.g., airline seat database splits,

one seat remains, bought twice, once in each half!

21

Why Distribute?
For Scalable Capacity

•  What if Gmail a huge success?
•  Workload exceeds capacity of one server
•  Fix: spread users across several servers

– Best case: linear scaling—if U users per box,
N boxes support NU users

– Bottlenecks? If each user’s inbox on one
server, how to route inbound mail to right
server?

– Scaling? How close to linear?
– Load balance? Some users get more mail than

others!

22

Performance Can Be Subtle

•  Goal: predictable performance under high
load

•  2 employees run a Starbucks
– Employee 1: takes orders from customers,

calls them out to Employee 2
– Employee 2:

• writes down drink orders (5 seconds per order)
• makes drinks (10 seconds per order)

•  What is throughput under increasing load?

23

Starbucks Throughput

•  Peak system performance: 4 drinks / min
•  What happens when load > 4 orders / min?
•  What happens to efficiency as load increases?

24

Starbucks Throughput

•  Peak system performance: 4 drinks / min
•  What happens when load > 4 orders / min?
•  What happens to efficiency as load increases?

What would preferable curve be?
What design achieves that goal?

25

Why Are Distributed Systems
Hard to Design?

•  Failure: of hosts, of network
–  Remember Lamport’s lament

•  Heterogeneity
–  Hosts may have different data representations

•  Need consistency (many specific definitions)
–  Users expect familiar “centralized” behavior

•  Need concurrency for performance
–  Avoid waiting synchronously, leaving resources idle
–  Overlap requests concurrently whenever possible

26

Security

•  Before Internet:
–  Encryption and authentication using cryptography
–  Between parties known to each other (e.g.,

diplomatic wire)
•  Today:

–  Entire Internet of potential attackers
–  Legitimate correspondents often have no prior

relationship
–  Online shopping: how do you know you gave credit

card number to amazon.com? How does amazon.com
know you are authorized credit card user?

–  Software download: backdoor in your new browser?
–  Software vulnerabilities: remote infection by worms!
–  Crypto not enough alone to solve these problems!

