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Today’s Lecture 

•  Administrivia 
•  Overview of Distributed Systems 

–  What are they? 
–  Why build them? 
–  Why are they hard to build well? 

•  Operating Systems Background 
•  Questionnaire 



Course Staff and Office Hours 

•  Instructor: 
–  Brad Karp, MPEB 7.05, Tue 2 PM – 3 PM, 

ext. 30406 

•  Teaching Assistant: 
–  Petr Marchenko, MPEB 7th floor lab, 

hours TBA, ext. 30400 

•  Office hours begin this week 
•  Time reserved for answering your questions 
•  Outside office hours, email to schedule 

appointment 
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Meeting Times and Locations 

•  Mondays 11 AM – 1 PM, 
25 Gordon Square 107 

•  Wednesdays 9 AM – 11 AM, 
Watson Medawar LT 

•  Lecture will run 90 minutes 
•  Sometimes lecture will be followed by a 30-

minute discussion led by a TA (e.g., Q&A on 
a coursework) 

•  No lecture next week (12th, 14th October) 
•  Reading week: 9th – 13th November, 

no lecture! 
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Class Communication 

•  Class web page 
–  http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2009/ 
–  Detailed calendar, coursework, class policies, 

announcements/corrections 
–  Your responsibility: check page daily! 

•  Public class mailing list: 
gz03@<department’s domain> 
–  Reaches all students in class and class staff 
–  You must subscribe; follow instructions on class web 

site 
–  Use to discuss material from lecture, courseworks 

(but not your solutions!) 
–  Your responsibility: check email daily! 



Class Communication (cont’d) 

•  Staff mailing list: 
gz03-staff@<department’s domain> 
– Reaches staff only 
– Use for more private questions, or questions 

that reveal details of your coursework solution 
– Please use this address for class-related 

email, not staff individual email addresses; 
any of us can reply, so faster response time 
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Readings, Lectures, and 
Lecture Notes 

•  Readings must be read before lecture; 
lectures assume you have done so 

•  Lecture notes will be posted to the class 
web site just after lecture 

•  Class calendar shows all reading 
assignments day by day… 
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Readings 

•  No textbook 
•  Classic and recent research papers on real, 

built distributed and secure systems 
•  Available on class web page; print these 

yourselves 
•  All readings examinable 
•  Research papers are dense and complex; 

they are often challenging 
–  Be prepared to read and re-read the papers 
–  Come to lecture with questions, and/or use office 

hours 
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Grading 

•  Final grade components: 
– One programming coursework: 10% 
– One problem set coursework: 5% 
– Final exam: 85% 
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Late Work Policy 

•  N.B. that M030/GZ03 policy differs from that 
for other CS classes! 

•  For every day late or fraction thereof, including 
weekend days, 10% of marks deducted 

•  Each student receives budget of 3 late days for 
entire term 
–  Each late day “cancels” one day of lateness 
–  Goal: give you flexibility, e.g., in case you can’t find a 

bug, or encounter unexpected other snag 
–  You choose how many late days to use when turning 

in a coursework late 
–  Must use whole late days—cannot use fractional ones! 
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Late Days (cont’d) 

•  If submission more than 2 days late after 
taking late days into account, zero marks 

•  Programming courseworks turned in 
online; may be submitted 24/7 

•  Problem set courseworks turned in on 
paper to CS 5th floor reception; can be 
submitted M – F only 
– Weekend days after deadline still count as 

elapsed days 
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Late days give you flexibility. 
No other extensions given on coursework, 
unless for unforeseeable, severely 
extenuating circumstances! 



Academic Honesty 

•  All courseworks must be completed 
individually 

•  May discuss understanding of problem 
statement, general sketch of approach 

•  May not discuss details of solution 
•  May not show your solution to others (this 

year or in future years) 
•  May not look at others’ solutions (this year 

or from past years) 
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Academic Honesty (cont’d) 

•  We use code comparison software 
– Compares parse trees; immune to obfuscation 
– Produces color-coded all-student-pairs code 

comparisons 

•  Don’t copy code—you will be caught! 
•  Penalty for copying: automatic zero marks, 

referral for disciplinary action by UCL 
(usually leads to exclusion from all exams 
at UCL) 
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What Is a Distributed System? 

•  Multiple computers (“machines,” “hosts,” 
“boxes,” &c.) 
– Each with CPU, memory, disk, network 

interface 
–  Interconnected by LAN or WAN (e.g., 

Internet) 

•  Application runs across this dispersed 
collection of networked hardware 

•  But user sees single, unified system 
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What Is a Distributed System? 
(Alternate Take) 

“A distributed system is a system in which I 
can’t do my work because some computer 
that I’ve never even heard of has failed.” 

–  Leslie Lamport, Microsoft Research (ex DEC) 
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Start Simple: Centralized System 

•  Suppose you run Gmail 
•  Workload: 

–  Inbound email arrives; store on disk 
– Users retrieve, delete their email 

•  You run Gmail on one server with disk 

Gmail 
Server (PC) 

Email 
Sender 

Email 
Sender 

Email 
Sender 

Email 
Reader 

Email 
Reader 

Email 
Reader 
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What are shortcomings of this design? 
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Why Distribute? 
 For Availability 

•  Suppose Gmail server goes down, or network 
between client and it goes down 

•  No incoming mail delivered, no users can read 
their inboxes 

•  Fix: replicate the data on several servers 
–  Increased chance some server will be reachable 
–  Consistency? One server down when delete message, 

then comes back up; message returns in inbox 
–  Latency? Replicas should be far apart, so they fail 

independently 
–  Partition resilience? e.g., airline seat database splits, 

one seat remains, bought twice, once in each half! 
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Why Distribute? 
For Scalable Capacity 

•  What if Gmail a huge success? 
•  Workload exceeds capacity of one server 
•  Fix: spread users across several servers 

– Best case: linear scaling—if U users per box, 
N boxes support NU users 

– Bottlenecks? If each user’s inbox on one 
server, how to route inbound mail to right 
server? 

– Scaling? How close to linear? 
– Load balance? Some users get more mail than 

others! 
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Performance Can Be Subtle 

•  Goal: predictable performance under high 
load 

•  2 employees run a Starbucks 
– Employee 1: takes orders from customers, 

calls them out to Employee 2 
– Employee 2:  

• writes down drink orders (5 seconds per order) 
• makes drinks (10 seconds per order) 

•  What is throughput under increasing load? 
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Starbucks Throughput 

•  Peak system performance: 4 drinks / min 
•  What happens when load > 4 orders / min? 
•  What happens to efficiency as load increases? 
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Starbucks Throughput 

•  Peak system performance: 4 drinks / min 
•  What happens when load > 4 orders / min? 
•  What happens to efficiency as load increases? 

What would preferable curve be? 
What design achieves that goal? 
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Why Are Distributed Systems 
Hard to Design? 

•  Failure: of hosts, of network 
–  Remember Lamport’s lament 

•  Heterogeneity 
–  Hosts may have different data representations 

•  Need consistency (many specific definitions) 
–  Users expect familiar “centralized” behavior 

•  Need concurrency for performance 
–  Avoid waiting synchronously, leaving resources idle 
–  Overlap requests concurrently whenever possible 
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Security 

•  Before Internet: 
–  Encryption and authentication using cryptography 
–  Between parties known to each other (e.g., 

diplomatic wire) 
•  Today: 

–  Entire Internet of potential attackers 
–  Legitimate correspondents often have no prior 

relationship 
–  Online shopping: how do you know you gave credit 

card number to amazon.com? How does amazon.com 
know you are authorized credit card user? 

–  Software download: backdoor in your new browser? 
–  Software vulnerabilities: remote infection by worms! 
–  Crypto not enough alone to solve these problems! 


