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Authors' AbstractWe describe a design for security in a distributed system and its implemen-tation. In our design, applications gain access to security services through anarrow interface. This interface provides a notion of identity that includessimple principals, groups, roles, and delegations. A new operating systemcomponent manages principals, credentials, and secure channels. It checkscredentials according to the formal rules of a logic of authentication. Ourimplementation is e�cient enough to support a substantial user community.
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1 IntroductionWe describe a design for security in a distributed system and a particularimplementation of this design. We present both the external interface andthe major internal interfaces of our implementation. A formal logic [2, 10]guided our design. We explain the correspondence between implementationand logic, in particular how an authentication credential represents a formulaand how an authentication is a proof. We discuss our experience and someperformance results; the implementation is e�cient enough to support asubstantial user community.For our purposes, a distributed system is a collection of nodes connectedby an insecure network; each node is a computer running an operating sys-tem that is trusted for local security. The setting for our implementationis a distributed system where each node is a Fire
y shared-memory multi-processor running the Taos operating system [20]. Taos is completely multi-threaded, yet also implements a protected address-space model close enoughto that of Unix that it can run most Unix binaries. Remote procedure call isthe primary means of interprocess communication. Although Taos has beena convenient test vehicle, our only real dependence on it was that we couldadapt it to our needs.We use the access control model of security [11] extended with compoundprincipals [6]. In this model there are objects (�les, printers, etc.), requests,and principals (users, machines, etc.) that utter requests. Each object has aguard or reference monitor that examines each request and decides whetheror not to grant it. The request must �rst be authenticated to identify theprincipal that uttered it, and then authorized only if the principal has theright to perform the requested operation on the object. The pieces of evi-dence that identify the uttering principal are called credentials. Compoundprincipals provide a precise and uniform representation for the sources ofrequests in a distributed system, including users, machines, channels, pro-grams, delegations, roles, and groups.In each node, a new operating system component called the authentica-tion agent manages compound principals and their credentials. Applicationsaccess security services through a narrow interface to the local agent. Theagent implements all credential exchanges and validations, communicatingwith agents in other nodes when necessary and checking credentials accord-ing to the formal rules of the logic. The agent uses a distributed certi�cationdatabase for names, group memberships, and executable images. From theunderlying operating system it needs only a bidirectional secure channel to1



each application, and global names for the channels between the applicationand the outside world.Many systems that o�er distributed security do so entirely at the levelof the application, either to avoid changing the kernel or because most oper-ating systems do not support a coherent model of user identity throughoutthe network. Our basic design can be implemented in the same way, withthe authentication agent linked into each application as a library.In fact, however, our distributed security is part of the operating system.This has one major advantage: the notion of identity or principal is built inat a very low level and is represented consistently everywhere. There is nodistinction between local and remote principals. Minor advantages are thatit is easy to provide the necessary secure channels between the authenticationagent and applications, and easy for a child process to inherit the authorityof its parent. The trusted computing base does not get any bigger, becausethe operating system must be trusted anyway.The next section reviews the logic. Section 3 presents the applicationprogramming interface (API) to Taos security. Section 4, the heart of thereport, describes the implementation in detail. Finally, Section 5 discussesour experience with the system in practice.We do not address either denial of service or the kind of non-disclosuresecurity policies that are based on an information 
ow model. We touch onlybrie
y on the problems of compatibility with other security mechanisms,such as Kerberos [9] and OSF DCE Security [14].2 BackgroundIn this section we explain our treatment of encryption and time, sketch therules of our authentication logic, and give an extended example of its use.Other papers treat these matters in detail [2, 10].We use shared key encryption to secure short-term node-to-node chan-nels. All other encryption is public key [16] and is done only for integrity,not for secrecy. We write K and K�1 for the public and secret keys of a keypair. We say that a message encrypted with K�1 is signed by K so that weneed to mention only the public key.Our authentication system relies on signed statements called certi�cates.These form the building blocks of credentials, which are proofs of authen-ticity. We view certi�cates and credentials both as logical formulas and, inthe implementation, as data. 2



Time does not appear explicitly in the logic; formally, assumptions andproofs concern only a given, implicit instant. In our system, on the otherhand, a time interval quali�es each certi�cate. A certi�cate is valid only forthe speci�ed interval. Therefore, the conclusion of a proof is valid only forthe intersection of the intervals of all the certi�cates used in the proof. Sincethese certi�cates typically originate at di�erent nodes, it is important thatnodes have loosely synchronized clocks. For synchronization we do not havea secure time server, but instead rely on the clocks of individual nodes.However, we can easily tolerate a one-minute skew because certi�catesare valid for at least a few minutes. The most obvious e�ect of a large skewis that authentication becomes impossible because the validity interval ofa formula is empty or does not include the current time. If a certi�cateoriginates at a node whose clock is much later than real time, or is used at anode whose clock is much earlier, it is also possible that the certi�cate willbe mistakenly considered valid even though it has expired.2.1 Some notations and rulesWe write A says S to mean that principal A supports the statement S (anassertion or a request). We write A ) B when A speaks for B, meaningthat if A makes a statement then B makes it too:1if (A) B) and (A says S)then (B says S)We think of A as being stronger than B. The ) relation is a partial order;that is, it is re
exive, antisymmetric, and transitive. It obeys many of thesame laws as implication, so we use the same symbol for it.Principals include:� Simple principals. Users, machines.� Channels. Network addresses, encryption keys. If S appears on chan-nel C then C says S. In particular, K says S represents a certi�catecontaining S and signed by K. A channel is the only kind of principalthat can directly make a statement, since a message can arrive onlyon a channel.1Although our logic includes propositional logic, in this report we do not describe anyformal notations or rules for propositional connectives. Instead, we use English keywords,like \if" and \then", and informal reasoning.3



� Groups. Sets of principals. If A is a member of G then A ) G,so A says S implies G says S. A group can be thought of as thedisjunction of its members.� Principals in roles. We write A as R for A in role R (for example,Bob as Admin for Bob acting as an administrator). A principal canadopt a role in order to reduce its rights [10, Section 6]. That is,A) (A as R).� Conjunctions of principals. We write A ^ B for the conjunction of Aand B. If both A says S and B says S then (A^ B) says S as well.� Principals quoting principals. We write B j A for B quoting A. IfB says A says S then (B jA) says S.� Principals acting on behalf of others. We write B for A for B actingon behalf of A. The principal B for A is stronger than B jA, since(B for A) says S when B says A says S and in addition B isauthorized to act as A's delegate.The hando� axiom represents the transfer of authority:if A says (B ) A)then (B ) A)In other words, we believe that B speaks for A when A says so. Therefore,if A says (B ) A) and B says S then A says S.Similarly, we have a delegation axiom:if A says ((B jA)) (B for A))then ((B jA)) (B for A))It means that we believe A when it says thatB jA speaks forB for A, that is,that B can act as A's delegate.2 Therefore, if A says ((B jA)) (B for A))and B says A says S then (B for A) says S. Comparing the result(B for A) says S with that of a hando�, A says S, we note that it mentionsB: both delegate and delegator lend some of their authority, and the identityof the delegate is not forgotten.2This axiom is not included in [10], but is suggested in [2]; we adopt it for simplicity.4



The operations as, ^, j, and for are monotonic with respect to ): ifB ) B0 and A) A0 then(B as A) ) (B0 as A0)(B ^A) ) (B0 ^A0)(B jA) ) (B0 jA0)(B for A) ) (B0 for A0)2.2 Logic and authenticationThis section gives a simpli�ed example of how logic can be used to reasonabout authenticating compound principals; there is more detail in later sec-tions. In the example, a machine Vax4 is booted with an operating systemOS. Together, Vax4 and OS form a node WS. A user Bob logs in to WS.We consider the reasoning necessary to authenticate requests from this loginsession to a �le server FS.In order to establish credentials, Vax4 must possess a secret. For exam-ple, if (Kvax4, K�1vax4) is a public key pair, then K�1vax4 is a suitable secret. LetK�1vax4 be available only to Vax4's boot �rmware, not to any of the operatingsystems it can run. At boot time, K�1vax4 is used to sign a boot certi�catethat transfers authority to a newly generated key Kws; in the logic, thiscerti�cate reads:(Kvax4 as OS) says (Kws ) (Kvax4 as OS)) (1)We call Kws the node key for WS. It speaks not for Kvax4 but for a weakerprincipal WS = (Kvax4 as OS), that is, Kvax4 in the role of the boot image.After booting, WS gets the boot certi�cate and K�1ws , but does not knowK�1vax4.We treat login as a specialized form of delegation. When Bob logs in,K�1bob is used to sign a delegation certi�cate that transfers authority to WS:Kbob says ((Kws jKbob)) (Kws for Kbob)) (2)Consider now a request from the login session to a �le server FS. Theremust �rst exist a channel Cbob over which to issue requests. As observed byFS, a request appears as a statement RQ on this channel:Cbob says RQ (3)To back RQ, WS supplies (1) and (2), and writes a channel certi�cate:(Kws jKbob) says (Cbob ) (Kws for Kbob)) (4)5



This represents a hando� from the node to the channel.By applying the delegation axiom to the delegation certi�cate (2), FScan deduce (Kws jKbob)) (Kws for Kbob)so the channel certi�cate (4) implies(Kws for Kbob) says (Cbob ) (Kws for Kbob)) (5)Further, FS can deduce Cbob ) (Kws for Kbob)by applying the hando� axiom to (5), so the request (3) yields(Kws for Kbob) says RQ (6)And FS can deduce Kws ) (Kvax4 as OS)by applying the hando� axiom to the boot certi�cate (1), so (6) yields((Kvax4 as OS) for Kbob) says RQ (7)by monotonicity.We still must prove that Kvax4 and Kbob correspond to Vax4 and Bob.To do this we must trust some certi�cation authority or CA. Trusting a CAwith known key Kca means believing that Kca speaks for any principal; inparticular, Kca ) Vax4 and Kca ) Bob. Thus, FS can use the certi�catesKca says (Kvax4 ) Vax4)Kca says (Kbob ) Bob)and the hando� axiom to obtainKvax4 ) Vax4Kbob ) Bobthen (7) to conclude ((Vax4 as OS) for Bob) says RQby monotonicity. That is, FS knows that Vax4 running OS requests RQ onbehalf of Bob. The access control algorithm given in [10, Section 9] can nowdetermine whether the request should be granted.The remainder of the report describes how this authentication logic isimplemented in Taos. 6



3 An API for AuthenticationThe logic is rather complex to be presented directly through a program-ming interface. Instead, Taos de�nes a simple and consistent set of securityservices. They are based on an abstract datatype Prin that represents prin-cipals, and a subtype Auth that represents principals that processes canspeak for.Section 3.1 gives the interface for sending and receiving authenticatedmessages; that is, it explains how a process that can speak for a principal Pcan make another process believe P says S. Section 3.2 gives the interfacefor authenticating and authorizing requests. Section 3.3 gives the interfacefor managing Auths; that is, it explains how a process can change the set ofprincipals that it can speak for.For brevity, we omit exceptions from the signatures of procedures.3.1 Authenticating messagesWe begin with a simpli�ed version of the interface for sending and receivingauthenticated messages, and improve it later in this section:PROCEDURE Send(dest:Address; p:Auth; m:Msg);PROCEDURE Receive(): (Prin, Msg);Send transmits the statement p says m to the process at address dest.Symmetrically, if Receive returns (p,m), some process that speaks for phas invoked Send(dest,p,m); in other words, the receiver can believe thatp says m.The interface has no notion of a principal that a process speaks forby default. Instead, the Auth argument to Send requires the process tospecify explicitly the principal that is uttering each message. Often a processhas only one Auth, and we could have added a \working authority" to theprocess state and a SetWorkingAuth procedure (by analogy with the workingdirectory), and dropped the Auth argument to Send or made it optional.This is similar to what Unix does with the e�ective uid. Or, to accommodatemulti-threaded programs, we could have made the working authority partof the thread state.This simpli�ed version of the interface is unsatisfactory because it tiesauthentication and communication together too closely. To separate them,we make explicit the relation between a channel c and the principal p thatit speaks for. 7



We assume that secure channels are available. A channel is secure ifevery message received on it comes from the same process. We might alsorequire messages on the channel to be secret, that is, received only by certainprocesses; this is a simple extension that we will not discuss further. Anabstract datatype Chan represents secure channels.To transmit an authenticated message, a process sends it on a securechannel, the receiver gets the channel c on which the message arrives, and anew operation GetPrin returns the p that the channel speaks for. In otherwords, c names the principal p.For this to work, a given channel must speak for at most one principal,so we need a cheap way to make channels. Our method is to take a sin-gle channel c on which a process can send securely, and then to multiplexmany subchannels onto c, one for each principal that the process speaks for.Sending and receiving is done on these subchannels.Our second try at an interface is thus:PROCEDURE GetChan(dest:Address): Chan;PROCEDURE GetSubChan(c:Chan; p:Auth): SubChan;PROCEDURE Send(dest:SubChan; m:Msg);PROCEDURE Receive(): (SubChan, Msg);PROCEDURE GetPrin(c:SubChan): Prin;The sending process �rst calls GetChan to get a secure channel c to theprocess at dest and then calls GetSubChan(c, p) to get a subchannel thatspeaks for p. The receiver calls GetPrin to recover a Prin.The actual Taos interface has a further re�nement: a process can uttermany statements, perhaps made by di�erent principals, in a single message.For example, one call could pass an array of names of �les to delete and aparallel array of principals that are authorized to do the deletions. To makethis work, we must reveal the addressing mechanism for subchannels: it isan integer called an authentication identi�er or AID. The sender calls GetAIDto learn the AID for a principal and sends it as an ordinary data value in themessage. The receiver pairs the channel on which the message arrives withthis AID to recover the speaking principal. So the actual Taos interface is:PROCEDURE GetChan(dest:Address): Chan;PROCEDURE GetAID(p:Auth): AID;PROCEDURE Send(dest:Chan; m:Msg);PROCEDURE Receive(): (Chan, Msg);PROCEDURE GetPrin(c:Chan; aid:AID): Prin;8



In Taos, the messages exchanged in this way are normally the call andreturn messages of remote procedure calls. RPC marshals an Auth parame-ter p by sending the result of GetAID(p), and unmarshals aid from channelc as the result of GetPrin(c, aid). It also gets the channel from the RPCbinding, and of course it encapsulates the Send and Receive calls. Theresult is that the RPC client can simply use Prins and Auths as argumentsand results, and does not have to call any of the procedures in this interface.This works for both calls and returns, so mutual authentication is possible.3.2 Basic authentication and authorizationThe receiver of an authenticated message calls GetPrin to �nd the Prin pthat represents the sender of the message. It can then use Authenticate toturn p into a string name.PROCEDURE Authenticate(p:Prin): TEXT;The result of Authenticate can represent a compound principal such asBob as admin, or it can be a simple name. Simple names are convenient forexisting applications; Section 4.5 describes the somewhat ad hoc rules Taosuses to reduce compound principals to simple names.The purpose of authentication is to tell the authorization service thesource of a request. We therefore introduce another abstract datatype ACLto represent access control lists, and the authorization operation Check todetermine whether acl grants access to p.PROCEDURE Check(acl:ACL; p:Prin): BOOL;Check both hides the details of naming and allows a convenient and e�cientcache of recent successful authorizations.Taos also o�ers operations for constructing and examining ACLs, but theyare beyond the scope of this report.3.3 Managing principalsA Taos process can obtain an Auth in �ve ways:� by inheritance from a parent process,� by presenting a login secret, 9



� by adopting a role,� by delegating rights, or� by claiming delegated rights.All but the �rst of these produce a new and unique Auth. In particular,each user session on a machine is represented by a di�erent Auth.The interface for managing Auths is:PROCEDURE Self(): Auth;PROCEDURE Inheritance(): ARRAY OF Auth;PROCEDURE New(name, password: TEXT): Auth;PROCEDURE AdoptRole(a:Auth; role:TEXT): Auth;PROCEDURE Delegate(a:Auth; b:Prin): Auth;PROCEDURE Claim(b:Auth; delegation:Prin): Auth;PROCEDURE Discard(a:Auth; all:BOOL);Self returns a default Auth for the current process. The default isspeci�ed when the process is created. Inheritance returns all the Authsthat the process inherits from its parent.New is used to generate entirely new credentials. The parameters describea user name and a user-speci�c secret su�cient to generate the credentialsdescribed in Section 4.3. The result is an Auth that represents node for name,where node is the local node. This result re
ects the fact that the user cannotmake a request without involving the machine and the operating system.AdoptRole weakens an authority by applying a role. If a represents A,then the result of AdoptRole(a,role) represents A as role.Roles are used in two ways in Taos. First, a process can restrict its rightsto those necessary to ful�ll a particular function by calling AdoptRole onone of its existing Auths. Second, a Taos node can give some of its rightsto a trusted process. Taos uses secure loading to determine whether an exe-cutable image is certi�ed (see Section 4.4). After loading a certi�ed image,Taos calls AdoptRole to create an Auth weaker than its own, which it handso� to the new process (for example, AdoptRole(Self(),"telnet-server")for a login daemon). This mechanism bears some resemblance to Unix se-tuid execution. However, in Taos there is a stronger guarantee about theloaded program, and the program need not receive all the rights of the node.10
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Figure 2: Structure of the authentication agent4 The Authentication AgentThe authentication agent handles most of the complexity of authenticatingrequests from compound principals. It has four parts. The secure channelmanager creates process-to-process secure channels. The authority man-ager associates Auths with processes and handles authentication requests.The credentials manager maintains credentials on behalf of local processesand validates certi�cates authored on other nodes. Finally, the certi�cationlibrary establishes a trusted mapping between principal names and crypto-graphic keys, and between groups and their members. Figure 2 shows thestructure of the authentication agent; arrows indicate call dependencies.Only a few changes were needed to the rest of Taos to support theauthentication agent: implementing authority inheritance in the processmanager; supporting secure loading; and adding Auth parameters to allsecurity-sensitive kernel calls.4.1 The secure channel managerThe secure channel manager implements the Chan datatype described inSection 3.1. It does not implement secure channels itself. Instead, it controlsthe construction of node-to-node channels, and then uses them to provideprocess-level channels to its clients. Since the purpose of authenticationis to prove that a channel utters a request on behalf of a principal, the12



secure channel manager must be able to attribute channels to processes andthereby link channels to the principals for which they speak. Our designdoes not mandate any one technique for implementing secure channels; suchtechniques are well documented [13].4.1.1 Node-to-node channelsGiven two nodes A and B, it is easy to establish a shared-key channel Cbetween them. We use the following protocol, which is described in moredetail in [10, Section 4]. In brief, A invents a random number Ja and sendsit to B encrypted under the public part of B's key Kb. Similarly, B sends Jbencrypted under A's key Ka. Note that this is encryption for secrecy ratherthan integrity. Now, both A and B can compute a shared key by combiningJa and Jb via a hash function. A shared key established in this fashion canbe used to form a secure channel C, which speaks for Kb from A's viewpointand for Ka from B's viewpoint.The secure channel manager maintains a cache of keys shared with othernodes, indexed by node address and used to implement GetChan and Send.Another cache contains a mapping from shared keys to node keys, and isused by Receive to get from the shared key that successfully decrypts amessage to a node key. Both of these caches can be 
ushed as necessary. Infact, both are 
ushed periodically in order to invalidate old keys. The key-to-node-key mapping is 
ushed half as often as the address-to-key mappingso as to prevent misses caused by partners using older keys.Each node is responsible for caching and timing out the keys it shareswith other nodes, and either end of a secure channel can trigger the gen-eration of a new shared key. When B reexecutes the key-establishmentprotocol, the resulting channel from A still speaks for Ka. Hence, rekeyingdoes not invalidate authentication state based on node keys.Taos does not implement hardware secure channels. The key exchangemechanism it implements is, however, suitable for constructing them. Her-bison [7] discusses the use of encrypting network controllers to build e�-cient secure channels. Our system design is intended to operate best withencryption-capable controllers. DES [12] hardware for such controllers hasbeen shown to operate at speeds of 1 Gbit/sec [5], so performance shouldnot be a problem.In our implementation, software DES is used to sign channel certi�cates(see Section 4.3.4), but requests are made without signature to avoid theoverhead of software encryption. 13



4.1.2 Process-to-process channelsThe channels o�ered to clients of the API are always between two pro-cesses. These channels are formed by multiplexing process-level data acrossthe node-to-node channels discussed in the previous section. The concreteform of the Chan datatype di�ers depending on the secure channel imple-mentation. However, all channel implementations must support naming ofchannels by ChanIDs:TYPE ChanID = { nk:KeyDigest; pr:INTEGER; addr:Address };The nk �eld of ChanID names the node key of the partner, pr identi�es thepartner process, and addr indicates the address of the partner authenticationagent. A message digest function is applied to node keys in order to producesmall values for the nk �eld. We use the MD4 message digest function [17].In Taos we exploit the fact that most communication employs a transportprotocol under our control. We identify each process with a 32-bit processtag (PTag)3 and mark all transmissions with the PTag of the sending process.The secure channel manager exports the primitives:PROCEDURE GetChanID(ch:Chan): ChanID;PROCEDURE PTagFromChan(c:ChanID): PTag;The receiver of a message can call GetChanID to obtain a ChanID given anabstract Chan. At the source of channel c|where c.nk is the digest of thelocal node key|PTagFromChan(c) can be called to derive the PTag for theprocess that controls c. In Taos, we put a PTag in the pr �eld and hencecan implement GetChanID by concatenating the sender's node key, PTag,and node address. The implementation of PTagFromChan just returns c.pr.Process-level multiplexing can also be done with standard protocol im-plementations such as TCP/IP and UDP/IP that use small integer portnumbers to identify the origin and destination of messages within a node.Port numbers would be perfect process identi�ers (that is, values of the pr�eld) if they were not reuseable. One possible workaround is to place restric-tions on the reuse of port numbers. Another is to treat process channels assecure connections that must be explicitly opened and closed; this requiresconsiderable care.3Process tags are never reused; this limits Taos to 232 processes per boot.14



4.2 The authority managerThe authority manager implements the operations on Auths and Prins dis-cussed in Sections 3.2 and 3.3. The internal interface to the authority man-ager parallels the API quite closely. However, for each Auth supplied as anargument, the kernel call dispatcher appends the PTag of the caller. ThisPTag argument is used to ascertain that the caller owns each supplied Auth.We say that a process owns an Auth if the authority manager has given thatprocess the right to use it. Whenever an Auth is explicitly returned to aprocess through the API, the calling process owns it.Each new Auth is assigned a unique AID by the authority manager. Inour implementation AIDs are 96 bits wide, so there is no need to reuse one.The authority manager maintains a table with credentials for the Auths itcreates, indexed by AID. Each entry contains:� credentials for the corresponding Auth,� a list of PTags of processes that own this Auth,� credentials for unclaimed delegations (only if this Auth resulted froma call to Delegate), and� a source from which to refresh delegation credentials (only if this Authresulted from a call to Claim).The precise structure of credentials is irrelevant to the authority manager.For now, we think of them as bundles of certi�cates, which for exampleprove that a channel speaks for a principal or that a principal is another'sdelegate.Much like Unix �le descriptors, Auths can be passed by inheritance tochild processes. The authority manager provides two primitives that theprocess manager can use to implement this inheritance:PROCEDURE Handoff(a:Auth; ptag:PTag);PROCEDURE PurgePTag(ptag: PTag);Handoff adds ptag to the list of PTags of processes that own a. It is calledwhen an Auth is inherited from a parent process. PurgePTag eliminatesall instances of ptag in the credentials table. It is called when the processidenti�ed by ptag terminates. 15



4.2.1 CallbacksAs we have seen, AIDs and channels are used to represent principals in net-work protocols. For this to work, the authority manager must be preparedto produce credentials on behalf of any Auth it manages. These credentialsare obtained with callbacks to save the cost of passing complex credentialsrepeatedly. In fact, credentials are generated lazily, only when needed, andAIDs may be passed before the corresponding credentials exist. Althoughcredentials could easily be bundled with requests, they are large enough (>1 kbyte) to a�ect communications performance. Since the results of authen-tication are cached extensively, callbacks improve performance for nearly allapplications, even in high-latency networks.Suppose a user-level process receives a request on a channel ch. Inthis case, the API function GetPrin returns a Prin p constructed fromGetChanID(ch) and the AID accompanying the request. Now the process canask its authentication agent to resolve p into a principal name, for examplewith a call to Authenticate(p). We use the PrinID datatype to representPrins that are passed across address-space boundaries (for instance betweenuser space and the authentication agent):TYPE PrinID = { ch:ChanID; aid:AID };The implementation of Authenticate(p) asks the requester's agent (atp.ch.addr) to provide credentials for p. This agent looks up p.aid in itscredentials table and determines whether PTagFromChan(p.ch) speci�es aprocess that owns the corresponding Auth. If it does, the requester's agentreturns a channel certi�cate as proof that the channel speaks for the princi-pal that p represents. This proof consists of the credentials found in p.aid'scredentials-table entry and a statement that p.ch quoting p.aid speaks forthe principal (see Section 4.3.1).It is critical for performance that the results of Authenticate be cached.Caching can be implemented in user space, in the operating system, or both.Our implementation caches the results of authentication callbacks in userspace, with a timeout equal to the validity interval of the supplied channelcerti�cate up to a maximum of 30 minutes.A callback also occurs when a call Claim(me,p) activates a delegation.The delegate's authentication agent passes p in a callback to the delegator'sagent, which uses p.aid to �nd credentials suitable for signing a delegationcerti�cate and returns a signed certi�cate to the delegate's agent. That agentmust remember p so that it can repeat the callback to refresh the delegation16



in case it expires. The delegation certi�cate need not be concealed. Anyagent may request a copy, since it is useful only to the delegate's agent.4.3 The credentials managerThe credentials manager is the heart of the Taos authentication system.Its primary functions are to build, check, and store credentials. We explainthe form of credentials and their logical meaning in the �rst two subsections.Then we give the interface to the credentials manager and discuss techniquesfor avoiding signatures.4.3.1 CredentialsWe understand credentials as having logical meanings. A credential is evi-dence that one principal Q speaks for another principal P . If the credentialwere written as a formula M , its recipient would want to check that Mimplies Q) P .Taos encodes credentials as S-expressions. The encoding is designed tomake straightforward the proof of the theorem that M implies Q ) P . Ifan S-expression is a well-formed credential, then there is a simple procedurefor extracting P and Q from it that ensures that M implies Q ) P . If inaddition all signatures in the S-expression are recent and correct, then theS-expression is said to be valid; the S-expression is interpreted as M onlyif it is valid. Thus, deriving Q ) P is reduced to parsing a credential andchecking signatures.In this section we de�ne our S-expression grammar for credentials. InSection 4.3.2 we give a table of correspondences between S-expressions andlogical formulas, e�ectively recovering the logical form of a credential fromthe S-expression encoding. This logical form is used only in explaining ourimplementation; the implementation does not manipulate formulas. We alsodescribe how to check whether a credential is valid.Table 1 gives the grammar for credentials. Names, keys, PrinIDs, andsignatures are terminals. The main production is the one for channel, be-cause requests always arrive on channels. The name components of primarycredentials are only hints, used to simplify the mapping of keys into names.We say that a credential y is embedded in a credential x if y is a subexpres-sion of x.A certi�cate is an instance of one of the �rst group of rules in the cre-dentials grammar. The signature in a certi�cate includes the interval of17



channel = ( `channel' prin prinID signature )boot = ( `boot' k as key signature )login = ( `login' k as session signature )session = ( `session' key boot signature )delegation = ( `for' delegator delegate signature )p as = ( `as' prin role )k as = ( `as' k as role ) j primaryprimary = ( key name )prin = boot j login j delegation j p asdelegator = prindelegate = prinrole = nameTable 1: Grammar for credentialstime for which it is valid plus an unforgeable value identifying the signer.This value is a MD4 digest of the certi�cate, encrypted by a RSA secretkey [16]. The digest is computed over the entire certi�cate, excluding em-bedded signatures, by a one-way function that reduces its input to a sizesmall enough to sign conveniently; the function is one-way in the sense thatit is computationally hard to �nd a di�erent input with the same digest.We now discuss speci�c credentials in some detail. For each type ofsigned credential we discuss an example, borrowing context from Section 2.2.Boot certi�cates. A boot certi�cate describes a hando� from a machinekey to a node key. In our example, the meaning M of the boot certi�cateis: (Kvax4 as OS) says (Kws ) (Kvax4 as OS)) (8)From M and the hando� axiom, we obtain:Kws ) (Kvax4 as OS)which is the formula Q) P in this case. The boot certi�cate is encoded as:(boot (as (Kvax4 Vax4) OS) Kws sig1)18



Login and session certi�cates. A login certi�cate is a special form ofdelegation certi�cate. It denotes a delegation from a user's key to the con-junction of a node key with a temporary session key. The user's key shouldbe in memory for the shortest possible time, to reduce the chance that thekey will be discovered by an attacker. In Taos, it is present just long enoughto sign the login certi�cate. This certi�cate is of long duration, on theorder of days. More sophisticated login protocols that take advantage ofsmart-cards can produce equivalent login certi�cates [1].The node key and the session key are combined in a session certi�cate,which represents a hando� from the session key to the node key. A sessioncerti�cate has a short timeout and is refreshed as needed until the end ofthe session. When the session ends, the session key is discarded so that thesession certi�cate can no longer be refreshed. Because the login certi�catedelegates to the node key and to the session key, the certi�cate becomes un-useable at the end of the session; the inclusion of the session key compensatesfor the long timeout of the login certi�cate.In our example, Bob, with key Kbob, logs in to WS. We still have theboot certi�cate (8). Let Ks be the session key; the session certi�cate adds:Ks says ((Kvax4 as OS)) Ks) (9)and the login certi�cate adds:Kbob says ((P1 jKbob)) (P1 for Kbob)) (10)where P1 is ((Kvax4 as OS) ^ Ks). From the conjunction of formulas (8),(9), and (10), we can derive:(Kws jKbob)) (P1 for Kbob)In the notation introduced above, the conjunction is M , and the principals(Kws jKbob) and (P1 for Kbob) are Q and P , respectively.In our encoding the session certi�cate is embedded inside the login cer-ti�cate, and the boot certi�cate inside the session certi�cate:(login(Kbob Bob)(session Ks (boot (as (Kvax4 Vax4) OS) Kws sig1) sig2)sig3)The embedded certi�cates identify the machine, the node, and the sessionkey, and give credentials for them. 19



General delegation certi�cates. The general form of delegation in-volves transfer of rights between principals. Continuing the example, sup-pose that Bob on WS delegates to a node (Vax5 as OS). The formula thatcorresponds to this delegation is:(Kws jKbob) says ((P3 jP2)) (P3 for P2))where P2 is (P1 for Kbob) and P3 is (Kvax5 as OS). Conjoining this formulawith those for Bob's login (8), (9), and (10), and with the boot certi�catefor (Vax5 as OS):(Kvax5 as OS) says (Kws0 ) (Kvax5 as OS))we can prove: (Kws0 jKws jKbob)) (P3 for P2)In our encoding the entire delegation certi�cate is:(for(login ::: sig3)(boot (as (Kvax5 Vax5) OS) Kws0 sig4)sig5)The login certi�cate given above is nested here in its entirety (abbreviatedwith an ellipsis) and used as the source of a delegation. The delegate is theboot certi�cate for Vax5 as OS.Channel certi�cates. Ultimately, channels are the only principals thatmake requests directly. A request on a channel is attributed to a principalthat has handed o� some of its rights to the channel. A channel certi�-cate represents this hando�. In our system, each certi�cate authenticates achannel multiplexed on a node-to-node key. More precisely, the channel isa node-to-node channel quoting a process quoting an AID. Its encoding is atextual representation of the PrinID datatype from Section 4.2.In our example, a channel certi�cate for a channel Cbob from Bob means:(Kws jKbob) says (Cbob ) P2)Conjoining this formula with those for Bob's login (8), (9), and (10), we cannow prove: Cbob ) P220



When Cbob is the channel key47 jptag13 jaid42, this certi�cate is encoded as:(channel(login ::: sig3)key47 ptag13 aid42sig4)Because channels are typically short-lived, a channel certi�cate normallyhas a short validity interval.4.3.2 The meanings of credentialsAs the previous examples suggest, each valid credential x in the grammar hasa logical meaningM(x). Now we de�neM in general. SinceM is a function,the mapping from S-expressions to formulas is clearly unambiguous. Wede�ne validity later in this section.It is convenient to use several auxiliary functions. A function I gives usthe immediate meaning of a credential. Then M(x) is de�ned to be I(x)conjoined with I(y) for every credential y embedded in x. Thus, the in-terpretation of a credential is its immediate meaning, plus the meaning ofany embedded credentials. In the cases of primary, p as, and k as creden-tials, which bear no signature, I(x) is simply true . In the other cases, I(x)is the assertion made by the top-level signature; it does not refer to othersignatures or their timestamps, and has the formS(x) says (T (x)) P (x))where P (x) and T (x) are principals and S(x) is the speaker, the principalthat issues the credential. In particular, when S(x) is a key, it is the keythat should be used in the credential's signature.In each case, the purpose of a credential x is to establish thatQ(x) speaksfor P (x). More precisely, the formulaM(x) should imply Q(x)) P (x). Forexample, a boot certi�cate x of the form(boot (Kvax4 Vax4) Kws signature)means Kvax4 says (Kws ) Kvax4); this formula is M(x). Let Q(x) be Kwsand P (x) be Kvax4; by the hando� axiom, M(x) implies Q(x) ) P (x). Ingeneral, we have:Theorem 1 For every credential x, it is provable thatif M(x) then Q(x)) P (x)21



x S(x) T (x) P (x) Q(x)boot Q(x:k as) x:key P (x:k as) x:keysession x:key P (x:boot) x:key Q(x:boot)login Q(x:k as) (P (x:s:boot) ^ P (x:s)) (P (x:s:boot) ^ P (x:s)) Q(x:s:boot)jP (x:k as) for P (x:k as) jQ(x:k as)delegation Q(x:delegator) P (x:delegate) P (x:delegate) Q(x:delegate)jP (x:delegator) for P (x:delegator) jQ(x:delegator)channel Q(x:prin) x:prinID P (x:prin) x:prinIDp as P (x:prin) as x:role Q(x:prin) as x:rolek as P (x:k as) as x:role Q(x:k as) as x:roleor x:key or x:keyprimary x:key x:keyThe immediate meaning I(x) of a credential x is S(x) says (T (x) ) P (x)) when S(x) is de�ned, and trueotherwise. The meaning M(x) of a credential x is the conjunction of I(x) with the immediate meanings of anycredentials embedded in x. In all cases, M(x) implies Q(x)) P (x). We abbreviate session by s.Table 2: The logical meaning of credentials
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Proof. We prove the theorem by induction on the structure of creden-tials. We use di�erent strategies in the cases that correspond to credentialswith top-level signatures and those that do not.When x is a credential with a top-level signature, in order to deriveQ(x)) P (x) from M(x) it su�ces to obtain both of the following:1. Q(x)) T (x), and2. if S(x) says (T (x)) P (x)) then T (x)) P (x).In all cases (1) will be a consequence of the meanings of embedded creden-tials. To obtain (2), we may use either� S(x)) P (x), and then the hando� axiom applies; or� P (x) is B for A and T (x) is B j A for some A and B such thatS(x)) A, and then the delegation axiom applies.As we show in the Appendix, the de�nitions of Table 2 satisfy these prop-erties. The cases of credentials without top-level signatures are mostlystraightforward; we treat them in the Appendix as well. 2A credential is valid if all the signatures it contains are well-formed,timely, and performed with the proper key. The proper key K for signinga certi�cate x is de�ned from S(x), with a clause for each of the possibleforms of S(x):� The proper key for a principal of the form A as R or A j A0 is theproper key for A, since it is A that must apply the signature.� The proper key for a key is the key itself.In general, K is the key that the principal S(x) uses. If x is valid, thenit has recently been signed with S(x)'s key K, so we can interpret x as aformula I(x) of the form S(x) says (T (x) ) P (x)). By convention, S(x)should use K to sign x only when S(x) supports T (x)) P (x). This is thejusti�cation for our logical reading of valid credentials.An obvious generalization of this de�nition of validity allows any keythat speaks for K to sign the certi�cate. The generalization is used inSection 4.3.4 to allow channel certi�cates to be signed with DES keys.Theorem 1 guarantees that validating a credential x su�ces to show thatQ(x)) P (x): if x is valid, then it is interpreted as M(x) and the theoremapplies. Corollary 2 makes this claim precise:23



Corollary 2 For every certi�cate y, assume that S(y) says (T (y)) P (y))is true for the validity interval of y if the proper key signs y. Let x be a validcredential. Then Q(x)) P (x) is true.Proof. If x is valid, then each certi�cate y embedded in x is valid: yis signed with the proper key and its validity interval includes the present.By our hypothesis, S(y) says (T (y)) P (y)) is true; that is, I(y) is true. Ifx itself bears a signature, then similarly S(x) says (T (x) ) P (x)) is true.Therefore, M(x) is also true, as M(x) is the conjunction of I(x) with I(y)for each y embedded in x. By Theorem 1, Q(x)) P (x) is true. 24.3.3 The Credentials interfaceThe credentials manager exports the Credentials interface to the authoritymanager. This interface de�nes an abstract type CredT that representscredentials, as well as procedures for constructing CredTs and for signingand validating channel certi�cates. A CredT de�nes a principal P thatcan make requests, and contains an expression in the credentials grammarsu�cient to prove that some other principal can speak for P .The credentials manager holds a CredT representing the credentials forthe node. Although the Fire
y lacks the �rmware necessary to generatea node key securely, Taos imitates secure booting by generating a bootcerti�cate and node key at system-startup time. The node's CredT containsthis certi�cate and key.The operations on credentials are:TYPE Cred = TEXT;PROCEDURE New(name, password: TEXT): CredT;PROCEDURE AdoptRole(t:CredT; role:TEXT): CredT;PROCEDURE Sign(t:CredT; p:PrinID): Cred;PROCEDURE Validate(cr:Cred; p:PrinID): TEXT;PROCEDURE Extract(cr:Cred): Cred;PROCEDURE SignDel(t:CredT; cr:Cred): Cred;PROCEDURE ClaimDel(t:CredT; cr:Cred): CredT;Each value of the Cred datatype contains a textual representation of cre-dentials according to the grammar of Table 1.New produces a CredT containing a login certi�cate and a session key.The CredT returned by AdoptRole contains credentials for t as role.The authority manager uses Sign to produce channel certi�cates in re-sponse to authentication callbacks. Similarly, it uses Validate to check24



the results of authentication callbacks and return principal names. Extractstrips o� an outer-level channel certi�cate, and returns the credentials ofthe principal for which the channel speaks.The delegator's authority manager implements Delegate by �nding andvalidating a channel certi�cate for the delegate. It then calls Extract to getthe delegate's credentials, and stores the result. The delegate's authoritymanager implements Claim by asking the delegator's agent for a delegationcerti�cate (produced with SignDel) and using it to call ClaimDel. Theresult is a CredT representing delegate for delegator.4.3.4 Signature techniquesWe use three techniques to minimize the number of public key encryptionsrequired to sign certi�cates:� As described in Section 4.1, we can establish a shared key K betweentwo nodes A (with key Ka) and B so that B believes that K speaksfor Ka. Therefore, A can sign certi�cates about channels to B by en-crypting with K instead of Ka. Only B need believe these certi�cates.DES encryption (underK) is much faster than RSA encryption (underKa).� When one process delegates to another on the same node, it is possibleto avoid one signature. The delegation certi�cate structure remainsthe same, but no cryptographic signature is needed. If an o�-nodedelegation follows, the signature of the outer certi�cate implies validityfor the inner one, because both use the same key.� When refreshing nested certi�cates, care must be taken not to invali-date higher-level signatures. It is su�cient to omit nested signaturesfrom the certi�cate digests. For example, when a session certi�cate isrefreshed, its validity times are changed. An enclosing login certi�catecan avoid refresh only if its digest omits the nested signature. Thisomission is safe since there is no mention of nested signatures in theimmediate meaning of credentials.4.4 The certi�cation libraryIf ACLs contained public keys instead of human-sensible names, networksecurity would be considerably less complex. Unfortunately, keys are big25



numbers that are too unwieldy for human users to manipulate. Moreover,at the highest level, computer security applies to names for people andresources. At some point there needs to be a trusted mapping from keysto the principal names they represent. Similarly, there need to be trustedmappings from group members to group names and from image digests torole names.The task of the certi�cation library is to implement these mappings. Wealso use it to recover keys from stable storage given passwords short enoughfor people to remember. Our certi�cation authority (or CA, see Section 2.2)is a simple program that manages the database underlying these services.This CA is o�-line in the sense that clients need not communicate with it inorder to trust its statements. A CA that could function without any networkconnections might be an interesting addition to our work. For example, wecould use a portable computer to write certi�cates, keep the computer in asafe, and allow 
oppy disks as the only means of communication with therest of the world.Bootstrapping trust. A practical system of any size must base trust onshared knowledge of a trusted CA. In Taos, this information takes the formof a CA public key. Certi�cates signed with this key are trusted. It is crucialto protect the corresponding secret key.A user learns his own secret key and the public key of his trusted CAby decrypting a user-speci�c string stored in the name server.4 This stringcontains the user's private data encrypted under a DES secret derived fromthe user's password. We keep analogous strings for nodes. Storing usersecrets in this way would not be necessary if users carried public key smart-cards [1, 15].Name certi�cates. These describe a mapping from keys to names. Theyare signed by a CA trusted for this purpose, much like CCITT X.509 cer-ti�cates [4]. The logical form of a certi�cate that maps Ku to U is:Kca says (Ku ) U)A simple extension of the grammar described in the previous section is usedto express these statements.4We could easily extend our system to incorporate a hierarchy of CAs. For a systemthat implements a CA hierarchy, some indication of the local CA's location in the hierarchywould be required as well [10, Section 5]. 26



Since certi�cates are statements signed o�-line, they can be believedeven if retrieved from untrusted storage. In Taos, we use a replicated, highlyavailable name service [3] to store name certi�cates. Certi�cates are indexedby name in this store. The replication makes a denial-of-service attack moredi�cult.We may now continue the example of Section 4.3.1. Given valid namecerti�cates that map Kbob to Bob and Kvax4 to Vax4, we obtain:Cbob ) ((Vax4 as OS) for Bob)Therefore, when a request appears on the channel Cbob, it is attributed to(Vax4 as OS) for Bob.Membership certi�cates. These state that a principal U speaks for (isa member of) a group G: Kca says (U ) G)They are used in Taos ACL checking, and also in role processing and secureloading.Image certi�cates. These are used in secure loading to verify the ex-ecutable image of a recently loaded program and to name the role underwhich that program should run. The purpose of an image certi�cate is toestablish that a given image digest I speaks for a role name R:I ) R(Think of R as the name of a program like emacs, or of a class of programslike games.) It would be su�cient for the CA to produce an image certi�cate:Kca says (I ) R)Instead, the CA permits a user U to write an image certi�cate for R. TheCA issues: Kca says ((U jR-owner)) R)where R-owner is a special name associated with R (e.g., emacs-owner withemacs). If Ku is U 's key, we obtain:(Ku jR-owner)) R27



This means that U can release a new version of R with digest I by signingan image certi�cate: Ku says R-owner says (I ) R)and then I ) R follows.Image digests can be computed using any secure one-way function. Taosstores image certi�cates as a �le property on certain executable �les.4.4.1 The CertLib interfaceThe certi�cation library exports the procedures:PROCEDURE CheckKey(name:TEXT; k:Key): BOOL;PROCEDURE IsMember(name, group: TEXT): BOOL;PROCEDURE CheckImage(d:Digest; prog, cert: TEXT);The credentials manager calls CheckKey to �nd and validate a name certi�-cate that states that k speaks for name. The IsMember procedure ascertainswhether name is a member of group. CheckImage supports secure loading.It checks that the certi�cate cert states that the image digest d speaks forthe program prog, and that cert is signed by a principal with control ofimages for prog.4.5 Simplifying compound namesAn authentication result in Taos is more often than not a compound prin-cipal. The principals that result from credential validations have the form:principal = namej (principal for principal)j (principal as role)where name and role are strings. Existing applications often deal only withsimple names. The following function reduces a principal to a simplename:� If the principal has a simple name, return it.� If the principal is B for A, apply this function recursively to A.(Checks can easily be added to guarantee that B is trustworthy.)28



� If the principal is A as R, then apply this function recursively toA. Take the resulting simple name, and �nd a membership certi�catestating that it speaks for R. If successful, then return R, otherwisefail.For example, WS for Bob reduces to Bob, and WS for (Bob as Admin)reduces to Admin if Bob) Admin (that is, if Bob is a member of Admin).5 ExperienceThe authentication system described in this report was in daily use for ayear by a community of nearly 80 researchers and administrative personnel.In this section we discuss our experience, and in particular the performanceof our system.5.1 Authentication for the Echo �le systemThe most commonly used authenticated application was Echo [3], a dis-tributed �le system used extensively within Taos. The Echo environmentexercised all the Taos security features described in this report except gen-eral delegation.In addition to authenticating normal �le system operations, Echo allowedthe use of roles to control access to protected parts of the �le system name-space. Users typically logged onto the system with the role \normal user",which indicated that they had no special privileges. Administrators hadthe option of taking on other roles when they wanted to access sensitive�les. Using these roles for system administration is more precise and lessdangerous than using a special super-user account with unquali�ed privileges(like root under Unix).It is often useful for a user to run programs with some of the rightsof a node. For example, a program might need control over all the node'sprocesses, or over the node's con�guration �les and working space. We usedsecure loading to allow normal users to run certain programs with enhancedrights.5.2 GatewaysWe built a gateway that allows ordinary NFS clients to access the Echo �lesystem. It uses standard methods to determine the principal p making an29



NFS request and then forwards the request to Echo. If the gateway runs asthe principal G, then it can utter forwarded requests as G jp. We could haveallowed the principal G j p in Echo ACLs. Instead, for each p we invent aname q, issue a certi�cate Kca says ((G jp)) q), and then use q on ACLsfor authorizing forwarded requests from p. In some systems q is called aproxy.This approach can be applied to accept messages authenticated by anyother protocol. The tricky part is �nding a place to put the gateway whereit can intercept and translate the authentication protocol, which is oftenapplication-speci�c.To go in the other direction and translate one of our authenticated mes-sages p says m into another protocol, say Kerberos, the gateway would haveto be able to authenticate itself as p in Kerberos. To achieve this, it wouldneed either to have the user's password for long enough to obtain a Kerberosticket-granting ticket, or to act itself as a Kerberos authentication server.We have not tried to implement this.5.3 PerformanceThe performance of our system depends on the costs of the cryptographicoperations:RSA sign RSA verify DES MD4248 ms 16 ms 15 ms 6 ms/kbyteOur RSA implementation [19] is carefully coded in C and assembler.We use a 512-bit modulus and a public key exponent of 3. The Fire
y has4 CVax processors, each running at about 2.5 MIPS. Our multiprocessorimplementation of RSA signatures gains nearly a factor of two in speed.With only a single processor, it takes 472 ms to compute a RSA signature;this compares with 68 ms on a DECstation 5000, which runs at 20 MIPS. Weuse public-domain implementations of MD4 and DES (in C); much fasterones are possible [10, Section 4].E�cient RSA key generation is also important to our implementation.Using three separate threads running a randomized prime generation algo-rithm [8, p. 388], we can produce a new RSA key in 10-15 seconds.5 Onlytwo primes are needed for generating a key, but there is a large variance inthe time required for generating a prime. Using three threads signi�cantlyreduces the average time required for generating two primes.5Even so, Taos precomputes session keys in background.30



Auth Delegate Authlogin delegationRSA sign | 1� 248 ms |RSA verify 3� 16 ms 10� 16 ms 7� 16 msDES 2� 15 ms 2� 15 ms 2� 15 msMD4 6 ms 18 ms 12 msS-expr 46 ms 165 ms 91 msRPC 2� 5 ms 3� 5 ms 2� 5 msTotal 140 ms 636 ms 255 msMeasured 143 ms 671 ms 276 msTable 3: Authentication test timingsIn Table 3 we show the results of measuring three basic authenticationoperations. The numbers assume an existing node-to-node secure channeland a loaded name certi�cate cache. We show how time is divided betweencryptographic functions and other parts of the system. We estimate thatRPC with non-trivial arguments takes on the order of 5 ms [18]. The linelabelled \S-expr" indicates the cost of parsing and writing S-expressions.This cost is about one-third of the total, but it could easily be reduced.The �rst column of the table (Auth-login) shows the time required forthe �rst authenticated RPC|subsequent calls to the same server using thesame credentials will get cache hits. The caller's credentials are those fora simple login session. This test includes a callback to the caller's agentand a subsequent channel-certi�cate validation. We expect this cost to beincurred infrequently: for example, when the user's machine �rst contactsa �le server, and whenever the credentials need refreshing thereafter (every30 minutes).The second test (Delegate) measures the time taken for a logged-in userto delegate to a logged-in user on another node. Delegation requires a hiddenauthentication, and hence three RPCs rather than two.The �nal test (Auth-delegation) is similar to the �rst (Auth-login), exceptthat the caller's credentials involve an additional delegation. Once again,the costs shown are incurred only on the �rst use of the credentials and eachtime the cache is refreshed.There are two important facts to be gleaned from Table 3. First, thecost of using credentials to make requests is considerably less than that of31



delegation. This is good, since delegations occur much less frequently thanrequests. Second, almost all of the component costs of authentication arecompute-intensive. Moving to a faster processor should improve the actualperformance linearly. The Auth-login test should take less than 25 ms on aDECstation 5000.Even with faster processors, it is clear that caching at several levels isessential to system performance:� The cache used to implement Authenticate prevents repeated authen-tication callbacks. It has a timeout of roughly 30 minutes, so there areat most two authentication callbacks to an Echo client in a 30-minuteinterval, regardless of the number of �le system operations performed.� The shared key cache in the secure channel manager prevents unneces-sary key exchanges. The keys stored there expire with a much longerperiod (6 hours).� The certi�cation library maintains a cache that saves the results ofname certi�cate validations. There a cached result can remain validuntil the certi�cate expires, although we 
ush results more frequentlyto speed up revocation.Further caching is clearly possible. For example, the meanings of com-mon embedded credentials (such as boot certi�cates) might be cached.5.4 ScaleAlthough our implementation was not used on a large scale, the technique ofo�-line certi�cation with minimal reliance on on-line services is well suitedto large naming hierarchies [10, Section 5.2]. The performance of our basicsecurity primitives is dependent on system scale only in the cost of fetchingstatic certi�cates such as those for names and group memberships. In ourimplementation, this cost is only a small fraction of the total overhead.While this cost might grow with the number and geographic distributionof certi�ed users, it can be o�set by caching, hierarchical certi�cation, anddatabase replication.Our design can accommodate fast revocation of name certi�cates alongthe lines discussed elsewhere [2, 10], but we have not implemented thisfeature. There is an inherent tradeo� between timely revocation and thee�ectiveness of caching. This tradeo� becomes more signi�cant as the scaleof the system increases. 32



6 ConclusionWe have described a framework for security in distributed systems that isbased on logic. The logic takes shape in an operating system that was indaily use by a substantial community. Our system employs compound cre-dentials to express the complex relationships between users, machines, andprograms, yet little of this complexity shows through to users and program-mers. Moreover, the careful optimizations that surround our use of publickey cryptography ensure that it does not hurt performance.We have explained our system in logical terms, and in particular obtaineda theorem that relates concrete credentials and their logical meanings. Itwould be interesting to obtain further theorems to prove the correctness ofour implementation. Even stating the proper results remains a challenge.The need for well-founded and expressive distributed security systemswill grow with the speed of processors and networks, the number of inter-connected entities, and the complexity of applications. Our work shows howto design practical systems that meet this need and demonstrates that suchsystems can be built and can perform well.AcknowledgementsAndrew Birrell, Morrie Gasser, Andy Goldstein, and Charlie Kaufman wereat the origin of many of the ideas discussed here. Allan Heydon, Roy Levin,Tim Mann, Roger Needham, and Mike Schroeder all suggested improve-ments in the presentation of this report.
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AppendixIn this appendix we complete the proof of Theorem 1.First we treat the cases of credentials with top-level signatures, followingthe strategy described in Section 4.3.2.� boot:1. Q(x)) T (x), since in this case both Q(x) and T (x) equal x:key.2. S(x) ) P (x), since S(x) is Q(x:k as) and P (x) is P (x:k as),and Q(x:k as) and P (x:k as) are always equal.� session:1. Since x:boot is embedded in x, the induction hypothesis guar-antees that M(x:boot) implies Q(x:boot) ) P (x:boot), thatis, Q(x) ) T (x). Further, M(x) implies M(x:boot) and henceQ(x)) T (x).2. S(x)) P (x), since both S(x) and P (x) equal x:key.� login:1. Since x:s:boot is embedded in x, the induction hypothesis guar-antees that M(x:s:boot) implies Q(x:s:boot) ) P (x:s:boot).Similarly, M(x:s) implies Q(x:s)) P (x:s). By de�nition Q(x:s)equals Q(x:s:boot), so M(x:s) implies Q(x:s:boot) ) P (x:s).Therefore, the conjunction of M(x:s:boot) and M(x:s) impliesQ(x:s:boot) ) (P (x:s:boot) ^ P (x:s)). Since Q(x:k as) andP (x:k as) are equal and j is monotonic, this conjunction alsoimplies (Q(x:s:boot) j Q(x:k as)) ) ((P (x:s:boot) ^ P (x:s)) jP (x:k as)), that is, Q(x) ) T (x). Finally, M(x) implies bothM(x:s:boot) and M(x:s), and hence Q(x)) T (x).2. P (x) is of the form B for P (x:k as) and T (x) of the form B jP (x:k as). Moreover, S(x) is Q(x:k as), which equals P (x:k as).� delegation:1. Since x:delegate and x:delegator are both embedded in x,the induction hypothesis guarantees thatM(x:delegate) impliesQ(x:delegate) ) P (x:delegate). Similarly, M(x:delegator)35



implies Q(x:delegator) ) P (x:delegator). Since j is mono-tonic, the conjunction of M(x:delegate) and M(x:delegator)implies (Q(x:delegate) j Q(x:delegator)) ) (P (x:delegate) jP (x:delegator)) that is, Q(x) ) T (x). Finally, M(x) impliesboth M(x:delegate) and M(x:delegator), and hence Q(x) )T (x).2. P (x) is of the form B for P (x:delegator) and T (x) of the formB jP (x:delegator). Moreover, S(x) is Q(x:delegator) and wehave proved Q(x:delegator) ) P (x:delegator) using the in-duction hypothesis.� channel:1. Q(x) ) T (x), since in this case both Q(x) and T (x) equalx:prinID.2. Since x:prin is embedded in x, the induction hypothesis guar-antees that M(x:prin) implies Q(x:prin) ) P (x:prin), thatis, S(x) ) P (x). Further, M(x) implies M(x:prin) and henceS(x)) P (x).The remaining cases correspond to credentials with no top-level signature.They are simpler:� p as: Since x:prin is embedded in x, the induction hypothesis guaran-tees that M(x:prin) implies Q(x:prin) ) P (x:prin). Therefore, bythe monotonicity of as, M(x:prin) implies (Q(x:prin) as x:role) )(P (x:prin) as x:role), that is, Q(x) ) P (x). Finally, M(x) impliesM(x:prin) and hence Q(x)) P (x).� k as: There are two cases depending on whether x is simply a primaryor contains a role. In the former case, Q(x) ) P (x), since bothQ(x) and P (x) equal x:key. In the latter case, x:k as is embeddedin x, and hence the induction hypothesis guarantees that M(x:k as)implies Q(x:k as)) P (x:k as). Therefore, by the monotonicity of as,M(x:k as) implies (Q(x:prin) as x:role) ) (P (x:prin) as x:role),that is, Q(x) ) P (x). Finally, M(x) implies M(x:k as) and henceQ(x)) P (x).� primary: Q(x) ) P (x), since in this case both Q(x) and P (x) equalx:key. 36
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