
Preprint of paper to appear in the Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
December 3-6, 1995, Copper Mountain Resort, Colorado.

Copyright © 1995 Association for Computing Machinery.

1

Abstract

Bayou is a replicated, weakly consistent storage system
designed for a mobile computing environment that includes porta-
ble machines with less than ideal network connectivity. To maxi-
mize availability, users can read and write any accessible replica.
Bayou’s design has focused on supporting application-specific
mechanisms to detect and resolve the update conflicts that natu-
rally arise in such a system, ensuring that replicas move towards
eventual consistency, and defining a protocol by which the resolu-
tion of update conflicts stabilizes. It includes novel methods for
conflict detection, called dependency checks, and per-write con-
flict resolution based on client-provided merge procedures. To
guarantee eventual consistency, Bayou servers must be able to roll-
back the effects of previously executed writes and redo them
according to a global serialization order. Furthermore, Bayou per-
mits clients to observe the results of all writes received by a server,
including tentative writes whose conflicts have not been ultimately
resolved. This paper presents the motivation for and design of
these mechanisms and describes the experiences gained with an
initial implementation of the system.

1. Introduction

The Bayou storage system provides an infrastructure for col-
laborative applications that manages the conflicts introduced by
concurrent activity while relying only on the weak connectivity
available for mobile computing. The advent of mobile computers,
in the form of laptops and personal digital assistants (PDAs)
enables the use of computational facilities away from the usual
work setting of users. However, mobile computers do not enjoy the
connectivity afforded by local area networks or the telephone sys-
tem. Even wireless media, such as cellular telephony, will not per-
mit continuous connectivity until per-minute costs decline enough
to justify lengthy connections. Thus, the Bayou design requires
only occasional, pair-wise communication between computers.
This model takes into consideration characteristics of mobile com-
puting such as expensive connection time, frequent or occasional
disconnections, and that collaborating computers may never be all
connected simultaneously [1, 13, 16].

The Bayou architecture does not include the notion of a “dis-
connected” mode of operation because, in fact, various degrees of

“connectedness” are possible. Groups of computers may be parti-
tioned away from the rest of the system yet remain connected to
each other. Supporting disconnected workgroups is a central goal
of the Bayou system. By relying only on pair-wise communication
in the normal mode of operation, the Bayou design copes with
arbitrary network connectivity.

A weak connectivity networking model can be accommodated
only with weakly consistent, replicated data. Replication is
required since a single storage site may not be reachable from
mobile clients or within disconnected workgroups. Weak consis-
tency is desired since any replication scheme providing one copy
serializability [6], such as requiring clients to access a quorum of
replicas or to acquire exclusive locks on data that they wish to
update, yields unacceptably low write availability in partitioned
networks [5]. For these reasons, Bayou adopts a model in which
clients can read and write to any replica without the need for
explicit coordination with other replicas. Every computer eventu-
ally receives updates from every other, either directly or indirectly,
through a chain of pair-wise interactions.

Unlike many previous systems [12, 27], our goal in designing
the Bayou system wasnot to provide transparent replicated data
support for existing file system and database applications. We
believe that applications must be aware that they may read weakly
consistent data and also that their write operations may conflict
with those of other users and applications. Moreover, applications
must be involved in the detection and resolution of conflicts since
these naturally depend on the semantics of the application.

To this end, Bayou provides system support for application-
specific conflict detection and resolution. Previous systems, such
as Locus [30] and Coda [17], have proven the value of semantic
conflict detection and resolution for file directories, and several
systems are exploring conflict resolution for file and database con-
tents [8, 18, 26]. Bayou’s mechanisms extend this work by letting
applications exploit domain-specific knowledge to achieve auto-
matic conflict resolution at the granularity of individual update
operations without compromising security or eventual consistency.

Automatic conflict resolution is highly desirable because it
enables a Bayou replica to remain available. In a replicated system
with the weak connectivity model adopted by Bayou, conflicts
may be detected arbitrarily far from the users who introduced the
conflicts. Moreover, conflicts may be detected when no user is
present. Bayou does not take the approach of systems that mark
conflicting data as unavailable until a person resolves the conflict.
Instead, clients can read data at all times, including data whose
conflicts have not been fully resolved either because human inter-
vention is needed or because other conflicting updates may be
propagating through the system. Bayou provides interfaces that
make the state of a replica’s data apparent to the application.

The contributions presented in this paper are as follows: we
introduce per-update dependency checks and merge procedures as

Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
Mike J. Spreitzer and Carl H. Hauser

Computer Science Laboratory
Xerox Palo Alto Research Center

Palo Alto, California 94304 U.S.A.

2

a general mechanism for application-specific conflict detection and
resolution; we define two states of an update, committed and tenta-
tive, which relate to whether or not the conflicts potentially intro-
duced by the update have been ultimately resolved; we present
mechanisms for managing these two states of an update both from
the perspective of the clients and the storage management require-
ments of the replicas; we describe how replicas move towards
eventual consistency; and, finally, we discuss how security is pro-
vided in a system like Bayou.

2. Bayou Applications

The Bayou replicated storage system was designed to support a
variety of non-real-time collaborative applications, such as shared
calendars, mail and bibliographic databases, program develop-
ment, and document editing for disconnected workgroups, as well
as applications that might be used by individuals at different hosts
at different times. To serve as a backdrop for the discussion in fol-
lowing sections, this section presents a quick overview of two
applications that have been implemented thus far, a meeting room
scheduler and a bibliographic database.

2.1 Meeting room scheduler

Our meeting room scheduling application enables users to
reserve meeting rooms. At most one person (or group) can reserve
the room for any given period of time. This meeting room schedul-
ing program is intended for use after a group of people have
already decided that they want to meet in a certain room and have
determined a set of acceptable times for the meeting. It does not
help them to determine a mutually agreeable place and time for the
meeting, it only allows them to reserve the room. Thus, it is a
much simpler application than one of general meeting scheduling.

Users interact with a graphical interface for the schedule of a
room that indicates which times are already reserved, much like
the display of a typical calendar manager. The meeting room
scheduling program periodically re-reads the room schedule and
refreshes the user’s display. This refresh process enables the user
to observe new entries added by other users. The user’s display
might be out-of-date with respect to the confirmed reservations of
the room, for example when it is showing a local copy of the room
schedule on a disconnected laptop.

Users reserve a time slot simply by selecting a free time period
and filling in a form describing the meeting that is being sched-
uled. Because the user’s display might be out-of-date, there is a
chance that the user could try to schedule a meeting at a time that
was already reserved by someone else. To account for this possi-
bility, users can select several acceptable meeting times rather than
just one. At most one of the requested times will eventually be
reserved.

A user’s reservation, rather than being immediately confirmed
(or rejected), may remain “tentative” for awhile. While tentative, a
meeting may be rescheduled as other interfering reservations
become known. Tentative reservations are indicated as such on the
display (by showing them grayed). The “outdatedness” of a calen-
dar does not prevent it from being useful, but simply increases the
likelihood that tentative room reservations will be rescheduled and
finally “committed” to less preferred meeting times.

A group of users, although disconnected from the rest of the
system, can immediately see each other’s tentative room reserva-
tions if they are all connected to the same copy of the meeting
room schedule. If, instead, users are maintaining private copies on
their laptop computers, local communication between the
machines will eventually synchronize all copies within the group.

2.2 Bibliographic database

Our second application allows users to cooperatively manage
databases of bibliographic entries. Users can add entries to a data-
base as they find papers in the library, in reference lists, via word
of mouth, or by other means. A user can freely read and write any
copy of the database, such as one that resides on his laptop. For the
most part, the database is append-only, though users occasionally
update entries to fix mistakes or add personal annotations.

As is common in bibliographic databases, each entry has a
unique, human-sensible key that is constructed by appending the
year in which the paper was published to the first author’s last
name and adding a character if necessary to distinguish between
multiple papers by the same author in the same year. Thus, the first
paper by Jones et al. in 1995 might be identified as “Jones95” and
subsequent papers as “Jones95b”, “Jones95c”, and so on.

An entry’s key is tentatively assigned when the entry is added.
A user must be aware that the assigned keys are only tentative and
may change when the entry is “committed.” In other words, a user
must be aware that other concurrent updaters could be trying to
assign the same key to different entries. Only one entry can have
the key; the others will be assigned alternative keys by the system.
Thus, for example, if the user employs the tentatively assigned key
in some fashion, such as embedding it as a citation in a document,
then he must also remember later to check that the key assigned
when the entry was committed is in fact the expected one.

Because users can access inconsistent database copies, the
same bibliographic entry may be concurrently added by different
users with different keys. To the extent possible, the system detects
duplicates and merges their contents into a single entry with a sin-
gle key.

Interestingly, this is an application where a user may choose to
operate in disconnected mode even if constant connectivity were
possible. Consider the case where a user is in a university library
looking up some papers. He occasionally types bibliographic refer-
ences into his laptop or PDA. He may spend hours in the library
but only enter a handful of references. He is not likely to want to
keep a cellular phone connection open for the duration of his visit.
Nor will he want to connect to the university’s local wireless net-
work and subject himself to student hackers. He will more likely
be content to have his bibliographic entries integrated into his
database stored by Bayou upon returning to his home or office.

3. Bayou’s Basic System Model

In the Bayou system, each data collection is replicated in full at
a number of servers. Applications running as clients interact with
the servers through the Bayou application programming interface
(API), which is implemented as a client stub bound with the appli-
cation. This API, as well as the underlying client-server RPC pro-
tocol, supports two basic operations: Read and Write. Read
operations permit queries over a data collection, while Write oper-
ations can insert, modify, and delete a number of data items in a
collection. Figure 1 illustrates these components of the Bayou
architecture. Note that a client and a server may be co-resident on a
host, as would be typical of a laptop or PDA running in isolation.

Access to one server is sufficient for a client to perform useful
work. The client can read the data held by that server and submit
Writes to the server. Once a Write is accepted by a server, the cli-
ent has no further responsibility for that Write. In particular, the
client does not wait for the Write to propagate to other servers. In
other words, Bayou presents a weakly consistent replication model
with a read-any/write-any style of access. Weakly consistent repli-
cation has been used previously for availability, simplicity and
scalability in a variety of systems [3, 7, 10, 12, 15, 19].

3

While individual Read and Write operations are performed at a
single server, clients need not confine themselves to interacting
with a single server. Indeed, in a mobile computing environment,
switching between servers is often desirable, and Bayou provides
session guarantees to reduce client-observed inconsistencies when
accessing different servers. The description of session guarantees
has been presented elsewhere [29].

To support application-specific conflict detection and resolu-
tion, Bayou Writes must contain more than a typical file system
write or database update. Along with the desired updates, a Bayou
Write carries information that lets each server receiving the Write
decide if there is a conflict and if so, how to fix it. Each Bayou
Write also contains a globally unique WriteID assigned by the
server that first accepted the Write.

The storage system at each Bayou server conceptually consists
of an ordered log of the Writes described above plus the data
resulting from the execution of these Writes. Each server performs
each Write locally with conflicts detected and resolved as they are
encountered during the execution. A server immediately makes the
effects of all known Writes available for reading.

In keeping with the goal of requiring as little of the network as
possible, Bayou servers propagate Writes among themselves dur-
ing pair-wise contacts, called anti-entropy sessions [7]. The two
servers involved in a session exchange Write operations so that
when they are finished they agree on the set of Bayou Writes they
have seen and the order in which to perform them.

The theory of epidemic algorithms assures that as long as the
set of servers is not permanently partitioned each Write will even-
tually reach all servers [7]. This holds even for communication
patterns in which at most one pair of servers is ever connected at
once. In the absence of new Writes from clients, all servers will
eventually hold the same data. The rate at which servers reach con-
vergence depends on a number of factors including network con-
nectivity, the frequency of anti-entropy, and the policies by which
servers select anti-entropy partners. These policies may vary
according to the characteristics of the network, the data, and its
servers. Developing optimal anti-entropy policies is a research
topic in its own right and not further discussed in this paper.

Figure 1. Bayou System Model

Read
 or
Write

Storage
System

Server State

SERVER

CLIENT

Bayou API

Application

Client Stub

Machine
boundaries

Anti-entropy

Storage
System

Server State

Storage
System

Server State

Read
 or
Write

SERVERS Storage
System

Server State

CLIENT

Bayou API

Application

Client Stub

4. Conflict Detection and Resolution

4.1 Accommodating application semantics

Supporting application-specific conflict detection and resolu-
tion is a major emphasis in the Bayou design. A basic tenet of our
work is that storage systems must provide means for an application
to specify its notion of a conflict along with its policy for resolving
conflicts. In return, the system implements the mechanisms for
reliably detecting conflicts, as specified by the application, and for
automatically resolving them when possible. This design goal fol-
lows from the observation that different applications have different
notions of what it means for two updates to conflict, and that such
conflicts cannot always be identified by simply observing conven-
tional reads and writes submitted by the applications.

As an example of application-specific conflicts, consider the
meeting room scheduling application discussed in Section 2.1.
Observing updates at a coarse granularity, such as the whole-file
level, the storage system might detect that two users have concur-
rently updated different replicas of the meeting room calendar and
conclude that their updates conflict. Observing updates at a fine
granularity, such as the record level, the system might detect that
the two users have added independent records and thereby con-
clude that their updates do not conflict. Neither of these conclu-
sions are warranted. In fact, for this application, a conflict occurs
when two meetings scheduled for the same room overlap in time.

Bibliographic databases provide another example of applica-
tion-specific conflicts. In this application, two bibliographic entries
conflict when either they describe different publications but have
been assigned the same key by their submitters or else they
describe the same publication and have been assigned distinct
keys. Again, this definition of conflicting updates is specific to this
application.

The steps taken to resolve conflicting updates once they have
been detected may also vary according to the semantics of the
application. In the case of the meeting room scheduling applica-
tion, one or more of a set of conflicting meetings may need to be

4

moved to a different room or different time. In the bibliographic
application, an entry may need to be assigned a different unique
key or two entries for the same publication may need to be merged
into one.

The Bayou system includes two mechanisms for automatic
conflict detection and resolution that are intended to support arbi-
trary applications: dependency checks and merge procedures.
These mechanisms permit clients to indicate, for each individual
Write operation, how the system should detect conflicts involving
the Write and what steps should be taken to resolve any detected
conflicts based on the semantics of the application. They were
designed to be flexible since we expect that applications will differ
appreciably in both the procedures used to handle conflicts, and,
more generally, in their ability to deal with conflicts.

Techniques for semantic-based conflict detection and resolution
have previously been incorporated into some systems to handle
special cases such as file directory updates. For example, the
Locus [30], Ficus [12], and Coda [17] distributed file systems all
include mechanisms for automatically resolving certain classes of
conflicting directory operations. More recently, some of these sys-
tems have also incorporated support for “resolver” programs that
reduce the need for human intervention when resolving other types
of file conflicts [18, 26]. Oracle’s symmetric replication product
also includes the notion of application-selected resolvers for rela-
tional databases [8]. Other systems, like Lotus Notes [15], do not

Figure 2. Processing a Bayou Write Operation

Bayou_Write (update, dependency_check, mergeproc) {
IF (DB_Eval (dependency_check.query) <> dependency_check.expected_result)

resolved_update = Interpret (mergeproc);
ELSE

resolved_update = update;
DB_Apply (resolved_update);

}

Figure 3. A Bayou Write Operation

Bayou_Write(
update = {insert, Meetings, 12/18/95, 1:30pm, 60min, “Budget Meeting”},
dependency_check = {

query = “SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 2:30pm AND end > 1:30pm”,

expected_result = EMPTY},
mergeproc = {

alternates = {{12/18/95, 3:00pm}, {12/19/95, 9:30am}};
newupdate = {};
FOREACH a IN alternates {

check if there would be a conflict
IF (NOT EMPTY (

SELECT key FROM Meetings WHERE day = a.date
 AND start < a.time + 60min AND end > a.time))

CONTINUE;
no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, “Budget Meeting”};
BREAK;

}
IF (newupdate = {}) # no alternate is acceptable

newupdate = {insert, ErrorLog, 12/18/95, 1:30pm, 60min, “Budget Meeting”};
RETURN newupdate;}

)

provide application-specific mechanisms to handle conflicts, but
rather create multiple versions of a document, file, or data object
when conflicts arise. As will become apparent from the next cou-
ple of sections, Bayou’s dependency checks and merge procedures
are more general than these previous techniques.

4.2 Dependency checks

Application-specific conflict detection is accomplished in the
Bayou system through the use of dependency checks. Each Write
operation includes a dependency check consisting of an applica-
tion-supplied query and its expected result. A conflict is detected if
the query, when run at a server against its current copy of the data,
does not return the expected result. This dependency check is a
precondition for performing the update that is included in the
Write operation. If the check fails, then the requested update is not
performed and the server invokes a procedure to resolve the
detected conflict as outlined in Figure 2 and discussed below.

As an example of application-defined conflicts, Figure 3 pre-
sents a sample Bayou Write operation that might be submitted by
the meeting room scheduling application. This Write attempts to
reserve an hour-long time slot. It includes a dependency check
with a single query, written in an SQL-like language, that returns
information about any previously reserved meetings that overlap
with this time slot. It expects the query to return an empty set.

5

Bayou’s dependency checks, like the version vectors and times-
tamps traditionally used in distributed systems [12, 19, 25, 27], can
be used to detect Write-Write conflicts. That is, they can be used to
detect when two users update the same data item without one of
them first observing the other’s update. Such conflicts can be
detected by having the dependency check query the current values
of any data items being updated and ensure that they have not
changed from the values they had at the time the Write was sub-
mitted, as is done in Oracle’s replicated database [8].

Bayou’s dependency checking mechanism is more powerful
than the traditional use of version vectors since it can also be used
to detect Read-Write conflicts. Specifically, each Write operation
can explicitly specify the expected values of any data items on
which the update depends, including data items that have been
read but are not being updated. Thus, Bayou clients can emulate
the optimistic style of concurrency control employed in some dis-
tributed database systems [4, 6]. For example, a Write operation
that installs a new program binary file might only include a depen-
dency check of the sources, including version stamps, from which
it was derived. Since the binary does not depend on its previous
value, this need not be included.

Moreover, because dependency queries can read any data in the
server’s replica, dependency checks can enforce arbitrary, multi-
item integrity constraints on the data. For example, suppose a
Write transfers $100 from account A to account B. The applica-
tion, before issuing the Write, reads the balance of account A and
discovers that it currently has $150. Traditional optimistic concur-
rency control would check that account A still had $150 before
performing the requested Write operation. The real requirement,
however, is that the account have at least $100, and this can easily
be specified in the Write’s dependency check. Thus, only if con-
current updates cause the balance in account A to drop below $100
will a conflict be detected.

4.3 Merge procedures

Once a conflict is detected, a merge procedure is run by the
Bayou server in an attempt to resolve the conflict. Merge proce-
dures, included with each Write operation, are general programs
written in a high-level, interpreted language. They can have
embedded data, such as application-specific knowledge related to
the update that was being attempted, and can perform arbitrary
Reads on the current state of the server’s replica. The merge proce-
dure associated with a Write is responsible for resolving any con-
flicts detected by its dependency check and for producing a revised
update to apply. The complete process of detecting a conflict, run-
ning a merge procedure, and applying the revised update, shown in
Figure 2, is performed atomically at each server as part of execut-
ing a Write.

In principle, the algorithm in Figure 2 could be imbedded in
each merge procedure, thereby eliminating any special mecha-
nisms for dependency checking. This approach would require
servers to create a new merge procedure interpreter to execute each
Write, which would be overly expensive. Supporting dependency
checks separately allows servers to avoid running the merge proce-
dure in the expected case where the Write does not introduce a
conflict.

The meeting room scheduling application provides good exam-
ples of conflict resolution procedures that are specific not only to a
particular application but also to a particular Write operation. In
this application, users, well aware that their reservations may be
invalidated by other concurrent users, can specify alternate sched-
uling choices as part of their original scheduling updates. These
alternates are encoded in a merge procedure that attempts to
reserve one of the alternate meeting times if the original time is
found to be in conflict with some other previously scheduled meet-

ing. An example of such a merge procedure is illustrated in Figure
3. A different merge procedure altogether could search for the next
available time slot to schedule the meeting, which is an option a
user might choose if any time would be satisfactory.

In practice, Bayou merge procedures are written by application
programmers in the form of templates that are instantiated with the
appropriate details filled in for each Write. The users of applica-
tions do not have to know about merge procedures, and therefore
about the internal workings of the applications they use, except
when automatic conflict resolution cannot be done.

In the case where automatic resolution is not possible, the
merge procedure will still run to completion, but is expected to
produce a revised update that logs the detected conflict in some
fashion that will enable a person to resolve the conflict later. To
enable manual resolution, perhaps using an interactive merge tool
[22], the conflicting updates must be presented to a user in a man-
ner that allows him to understand what has happened. By conven-
tion, most Bayou data collections include an error log for
unresolvable conflicts. Such conventions, however, are outside the
domain of the Bayou storage system and may vary according to
the application.

In contrast to systems like Coda [18] or Ficus [26] that lock
individual files or complete file volumes when conflicts have been
detected but not yet resolved, Bayou allows replicas to always
remain accessible. This permits clients to continue to Read previ-
ously written data and to continue to issue new Writes. In the
meeting room scheduling application, for example, a user who
only cares about Monday meetings need not concern himself with
scheduling conflicts on Wednesday. Of course, the potential draw-
back of this approach is that newly issued Writes may depend on
data that is in conflict and may lead to cascaded conflict resolution.

Bayou’s merge procedures resemble the previously mentioned
resolver programs, for which support has been added to a number
of replicated file systems [18, 26]. In these systems, a file-type-
specific resolver program is run when a version vector mismatch is
detected for a file. This program is presented with both the current
and proposed file contents and it can do whatever it wishes in order
to resolve the detected conflict. An example is a resolver program
for a binary file that checks to see if it can find a specification for
how to derive the file from its sources, such as a Unix makefile,
and then recompiles the program in order to obtain a new,
“resolved” value for the file. Merge procedures are more general
since they can vary for individual Write operations rather than
being associated with the type of the updated data, as illustrated
above for the meeting room scheduling application.

5. Replica Consistency

While the replicas held by two servers at any time may vary in
their contents because they have received and processed different
Writes, a fundamental property of the Bayou design is that all serv-
ers move towards eventual consistency. That is, the Bayou system
guarantees that all servers eventually receive all Writes via the
pair-wise anti-entropy process and that two servers holding the
same set of Writes will have the same data contents. However, it
cannot enforce strict bounds on Write propagation delays since
these depend on network connectivity factors that are outside of
Bayou’s control.

Two important features of the Bayou system design allows
servers to achieve eventual consistency. First, Writes are per-
formed in the same, well-defined order at all servers. Second, the
conflict detection and merge procedures are deterministic so that
servers resolve the same conflicts in the same manner.

In theory, the execution history at individual servers could vary
as long as their execution was equivalent to some global Write

6

ordering. For example, Writes known to be commutative could be
performed in any order. In practice, because Bayou's Write opera-
tions include arbitrary merge procedures, it is effectively impossi-
ble either to determine whether two Writes commute or to
transform two Writes so they can be reordered as has been sug-
gested for some systems [9].

When a Write is accepted by a Bayou server from a client, it is
initially deemed tentative. Tentative Writes are ordered according
to timestamps assigned to them by their accepting servers. Eventu-
ally, each Write is committed, by a process described in the next
section. Committed Writes are ordered according to the times at
which they commit and before any tentative Writes.

The only requirement placed on timestamps for tentative
Writes is that they be monotonically increasing at each server so
that the pair <timestamp, ID of server that assigned it> produce a
total order on Write operations. There is no requirement that serv-
ers have synchronized clocks, which is crucial since trying to
ensure clock synchronization across portable computers is prob-
lematic. However, keeping servers’ clocks reasonably close is
desirable so that the induced Write order is consistent with a user’s
perception of the order in which Writes are submitted. Bayou serv-
ers maintain logical clocks [20] to timestamp new Writes. A
server’s logical clock is generally synchronized with its real-time
system clock, but, to preserve the causal ordering of Write opera-
tions, the server may need to advance its logical clock when Writes
are received during anti-entropy.

Enforcing a global order on tentative, as well as committed,
Writes ensures that an isolated cluster of servers will come to
agreement on the tentative resolution of any conflicts that they
encounter. While this is not strictly necessary since clients must be
prepared to deal with temporarily inconsistent servers in any case,
we believe it desirable to provide as much internal consistency as
possible. Moreover, clients can expect that the tentative resolution
of conflicts within their cluster will correspond to their eventual
permanent resolution, provided that no further conflicts are intro-
duced outside the cluster.

Because servers may receive Writes from clients and from
other servers in an order that differs from the required execution
order, and because servers immediately apply all known Writes to
their replicas, servers must be able to undo the effects of some pre-
vious tentative execution of a Write operation and reapply it in a
different order. Interestingly, the number of times that a given
Write operation is re-executed depends only on the order in which
Writes arrive via anti-entropy and not on the likelihood of conflicts
involving the Write.

Conceptually, each server maintains a log of all Write opera-
tions that it has received, sorted by their committed or tentative
timestamps, with committed Writes at the head of the log. The
server’s current data contents are generated by executing all of the
Writes in the given order. Techniques for pruning a server’s Write
log and for efficiently maintaining the corresponding data contents
by undoing and redoing Write operations are given in Section 7.

Bayou guarantees that merge procedures, which execute inde-
pendently at each server, produce consistent updates by restricting
them to depend only on the server’s current data contents and on
any data supplied by the merge procedure itself. In particular, a
merge procedure cannot access time-varying or server-specific
“environment” information such as the current system clock or
server’s name. Moreover, merge procedures that fail due to
exceeding their limits on resource usage must fail deterministi-
cally. This means that all servers must place uniform bounds on the
CPU and memory resources allocated to a merge procedure and
must consistently enforce these bounds during execution. Once
these conditions are met, two servers that start with identical repli-
cas will end up with identical replicas after executing a Write.

6. Write Stability and Commitment

A Write is said to be stable at a server when it has been exe-
cuted for the last time by that server. Recall that as servers learn of
new updates by performing anti-entropy with other servers, the
effects of previously executed Write operations may need to be
undone and the Writes re-executed. Thus, a given Write operation
may be executed several times at a server and may produce differ-
ent results depending on the execution history of the server. A
Write operation becomes stable when the set of Writes that precede
it in the server’s Write log is fixed. This means that the server has
already received and executed any Writes that could possibly be
ordered before the given Write. Bayou’s notion of stability is simi-
lar to that in ordered multicast protocols, such as those provided in
the ISIS toolkit [2].

In many cases, an application can be designed with a notion of
“confirmation” or “commitment” that corresponds to the Bayou
notion of stability. As an example, in the Bayou meeting room
scheduling application, two users may try to schedule separate
meetings for the same time in the same room. Only when one of
the users discovers that his Write has become stable and his sched-
ule still shows that he has reserved the room for the desired time,
can he be sure that his tentative reservation has been confirmed.

Since clients may want to know when a Write has stabilized,
the Bayou API provides means for inquiring about the stability of
a specific Write. Given a Write’s unique identifier, a client can ask
a server whether the given Write is stable at the server. The answer
may vary, of course, depending on which server is contacted.
Bayou also provides support for clients that may choose to access
only stable data.

How does a server determine whether a Write is stable? One
approach would be to have each server include in the information
passed during anti-entropy not only any Writes that have been
accepted by this server but also the current value of the clock that
it uses to timestamp new Writes. With suitable assumptions about
the propagation order of Writes, a server could then determine that
a Write is stable when it has a lower timestamp than all servers’
clocks. The main drawback of this approach is that a server that
remains disconnected can prevent Writes from stabilizing, which
could cause a large number of Writes to be rolled back when the
server reconnects.

To speed up the rate at which updates stabilize in an environ-
ment where communication with some servers may not be possible
for extended periods of time, the Bayou system uses a commit pro-
cedure. That is, a Write becomes stable when it is explicitly com-
mitted, and, in fact, we generally use the terms “stable” and
“committed” interchangeably in the Bayou system. Committed
Writes, in commit order, are placed ahead of any tentative Writes
in each server’s Write log. This, along with Bayou’s anti-entropy
protocol ensuring that servers learn of committed Writes in the
order that they were committed, provides stability.

In the Bayou system, we use a primary commit scheme [28].
That is, one server designated as the primary takes responsibility
for committing updates. Knowledge of which Writes have com-
mitted and in which order they were committed then propagates to
other servers during anti-entropy. In all other respects, the primary
behaves exactly like any other server. Each replicated data collec-
tion can have a different server designated as its primary.

Any commit protocol that prevents different groups of servers
from committing updates in different orders would meet Bayou’s
needs. In our anticipated weak connectivity environment, using a
primary to commit data is more attractive than the standard two-
phase commit protocol since it alleviates the need to gather a
majority quorum of servers. Consider the case of data that is repli-
cated among laptops that are mostly disconnected. Requiring a
majority of these laptops to be in communication with each other

7

at the same time in order to commit updates would be unreason-
able.

The primary commit approach also enables updates to commit
on a disconnected laptop that acts as the primary server. For exam-
ple, suppose a user keeps the primary copy of his calendar with
him on his laptop and allows others, such as a spouse or secretary,
to keep secondary, mostly read-only copies. In this case, the user’s
updates to his own calendar commit immediately. This example
illustrates how one might choose the primary to coincide with the
locus of update activity, thereby maximizing the rate at which
Writes get committed.

Unlike other distributed storage systems in which the ability to
commit data is of primary importance, the Bayou design readily
accommodates the temporary unavailability of the primary. The
inability of a client to communicate with the primary server, for
instance if the primary crashes or is disconnected, does not prevent
it from performing useful Read and Write operations. Writes
accepted by other servers simply remain tentative until they even-
tually reach the primary.

Bayou tries to arrange, but cannot ensure, that the order in
which Writes are committed is consistent with the tentative order
indicated by their timestamps. Writes from a given server are com-
mitted in timestamp order. Writes from different servers, however,
may commit in a different order based on when the servers per-
form anti-entropy with the primary and with each other. Writes
held on a disconnected non-primary server, for instance, will com-
mit only after the server reconnects to the rest of the system and
could be committed after Writes with later timestamps.

7. Storage System Implementation Issues

The Bayou design places several demands on the underlying
storage system used by each server including the need for space-
efficient Write logging, efficient undo/redo of Write operations,
separate views of committed and tentative data, and support for
server-to-server anti-entropy. We implemented a storage system
tailored to these special needs.

Our implementation is factored into three main components as
shown in Figure 4: the Write Log, the Tuple Store, and the Undo
Log. The Write Log contains Writes that have been received by a
Bayou server, sorted by their global committed or tentative order.
The server’s Tuple Store is a database that is obtained by executing

Figure 4. Bayou Database Organization

In Memory

Timestamp Vectors

S1 SnS2 S3
α δ ϕβ O

C

S1 SnS2 S3
µ δ ψυ F

S1 SnS2 S3
δ ϕλ π

On Stable Storage

Tuple Store Undo Log

Table 1
Table 2

Table 3

c/f

c/f

c/f

1
1
0

0

1 1

0 1

Write Log

Tentative

Committed

Tuple Store (checkpoint)

Table 1
Table 2

Table 3

the Writes in order and is used to process Read requests. The Undo
Log facilitates rolling back tentative Writes that have been applied
to the Tuple Store so that they can be re-executed in a different
order, such as when a newly received Write gets inserted into the
middle of the Write Log or when existing Writes get reordered
through the commit process.

The Write Log conceptually contains all Writes ever received
by the server, as discussed in Section 5. In practice, a server can
discard a Write from the Write Log once it becomes stable, since
by definition the server will never need to rollback and re-execute
a stable Write. Bayou servers do, in fact, hold onto a few recently
committed Writes to facilitate incremental anti-entropy, the details
of which are beyond the scope of this paper. Thus, the Write Log is
actually an ordered set of Writes containing a tail of the committed
Writes and all tentative Writes known to the server.

Each server must keep track of which Writes it has received but
are no longer explicitly held in its Write Log. This is to ensure that
the server does not re-accept the same Writes from another server
during anti-entropy. Each server maintains a timestamp vector,
called the “O vector”, to indicate in a compact way the “omitted”
prefix of committed Writes. This O vector records, for each server,
the timestamp of the latest Write from the given server that has
been discarded. A single timestamp vector can precisely character-
ize the set of discarded Writes because: (1) servers discard a prefix
of their Write Log, and (2) Writes that originate from any given
server propagate and get committed in timestamp order.

The Tuple Store we implemented is an in-memory relational
database, providing query processing in a subset of SQL, local
transaction support, and some integrity constraints. Requiring a
database to fit in virtual memory is, admittedly, a practical limita-
tion in our current implementation, but is not intrinsic to the over-
all Bayou design. The Tuple Store, and its associated language for
specifying queries and updates, is the principal place in the Bayou
architecture where the issue of data model arises. We chose the
relational model for our initial prototype because of its power and
flexibility. It naturally supports fine-grain access to specific fields
of tuples as well as queries and updates to all tuples in the data-
base.

A unique aspect of the Tuple Store is that it must support the
two distinct views of a Bayou database that are of interest to cli-
ents: committed and full. When a Write is tentative, its effect
appears in the full view but not in the committed view. Once the
Write has been committed, its effect appears in both views. A ten-

8

tative deletion may result in a tuple that appears in the committed
view but not in the full view. For many servers, certainly those that
communicate regularly with the primary, the committed and full
views will be nearly identical. However, neither view is a subset of
the other.

Our Tuple Store maintains the union of the two views. Each
tuple is tagged with a 2-bit characteristic vector identifying the set
of views that contain it. The bits of all tuples affected by a Write
get set when the Write is applied to the Tuple Store. Therefore, re-
executing a Write when it gets committed is necessary so that all
corresponding committed bits get set appropriately. Our query pro-
cessor respects and propagates these bits, so that in the result of a
query each tuple is tagged with the views for which that tuple
would be produced if the identical query were run conventionally.
Propagating these bits through a relational algebra query is
straightforward. Assuming the tentative and committed views are
nearly identical, this technique reduces the space occupied by the
Tuple Store, compared to maintaining two separate full and com-
mitted databases, by nearly a factor of two without substantially
increasing the query processing cost. In addition, our query pro-
cessor can easily guarantee that identical tuples occurring in the
two views of a query result will always be merged and delivered as
a single tuple with both bits in the characteristic vector set. This
makes it convenient for clients to base decisions on the difference
between the two views without having to merge the results of inde-
pendent queries.

To support anti-entropy efficiently, the running state of each
server also includes two timestamp vectors that represent the com-
mitted and full views. The “C vector” characterizes the state of the
Tuple Store after executing the last committed Write in the Write
Log while the “F vector” characterizes the state after executing the
last tentative Write in the Write Log, that is, the current Tuple
Store. These timestamp vectors are not used for conflict detection;
they simply enable server pairs to identify precisely the sets of
Writes that need to be exchanged during anti-entropy.

Figure 5. Applying Sets of Bayou Writes to the Database

Receive_Writes (writeset, received_from) {
IF (received_from = CLIENT) {

Received one write from the client, insert at end of WriteLog
first increment the server’s timestamp
logicalclock = MAX(systemclock, logicalclock + 1);
write = First(writeset);
write.WID = {logicalclock, myServerID};
write.state = TENTATIVE;
WriteLog_Append(write);
Bayou_Write(write.update, write.dependency_check, write.mergeproc);

} ELSE {
Set of writes received from another server during anti-entropy,
therefore writeset is ordered
write = First(writeset);
insertionPoint = WriteLog_IdentifyInsertionPoint(write.WID);
TupleStore_RollbackTo(insertionPoint);
WriteLog_Insert(writeset);
Now roll forward
FOREACH write IN WriteLog AFTER insertionPoint DO

Bayou_Write(write.update, write.dependency_check, write.mergeproc);
 # Maintain the logical clocks of servers close
 write = Last(writeset);
 logicalclock = MAX(logicalclock, write.WID.timestamp);

}
}

The Undo Log permits a server to undo any effects on the
Tuple Store of Writes performed after a given position in the Write
Log. As each new Write is received via anti-entropy, a server
inserts it into its Write Log. Newly committed Writes are inserted
immediately following the current set of committed Writes known
to the server, which may in turn require that some of these Writes
be removed from their previous tentative positions in the Write
Log. After all the Writes have been received, the server uses its
Undo Log to roll back its Tuple Store to a state corresponding to
the position where the first newly received Write was inserted. It
then enumerates and executes all following Writes from the Write
Log, bringing its Tuple Store and Undo Log up-to-date. This pro-
cedure is illustrated in Figure 5.

For crash recovery purposes, both the full Write Log and a
checkpoint of the Tuple Store are maintained in stable storage,
while for performance the Write Log and the current Tuple Store
are maintained in memory as shown in Figure 4. The Undo Log is
maintained only in memory. The stable checkpoint of the Tuple
Store reflects only a prefix of the committed Writes. This check-
point must contain the effects of any Writes that have been trun-
cated from the Write Log. At all times, a valid Tuple Store can be
recovered by reading this checkpoint and applying a suffix of the
Write Log to it. Thus, to make the database recoverable, Bayou
stably records the unique identifier of the last Write reflected in the
Tuple Store checkpoint (making it possible to identify the correct
suffix of the Write Log) and makes the Write Log itself recover-
able using conventional techniques for logging high-level changes
to the Write Log.

8. Access Control

Providing access control and authentication in Bayou posed
interesting challenges because of our minimal connectivity
assumptions. In particular, the design cannot rely on an online,
trusted authentication server [23] to mediate the establishment of

9

secure channels between a client and server or between two Bayou
servers. As an example, suppose two users holding Bayou replicas
on their portable computers are in a meeting together. Before per-
forming anti-entropy, each of the two mutually suspicious servers
must verify that the other is authorized to manage the data. Simi-
larly, if one machine simply wants to act as a client for the data
stored on the other, it will want to make sure that the server is
legitimate and then must prove that it is authorized to access the
data.

The access control model currently implemented in the Bayou
system provides authorization at the granularity of a whole data
collection, which is the unit of replication. A user may be granted
Read and Write privileges to a data collection. A user may also be
granted “Server” privileges to maintain a replica of the data on his
workstation or portable computer, that is, to run a server for the
data collection. Enabling servers to run on mobile platforms radi-
cally departs from the notion of physically protected servers.

Mutual authentication and access control in Bayou is based on
public-key cryptography. Every user possesses a public/private
key pair and a set of digitally signed access control certificates
granting him access to various data collections. Client applications
and Bayou servers operate on behalf of users and obtain the key
pair and access control certificates from the corresponding user at
start-up time. Currently, we use a single trusted signing authority
with a well-known public key to sign all access-granting certifi-
cates, though moving to a hierarchy or web of signing authorities
would not be difficult.

Bayou uses three types of certificates to grant, delegate and
revoke access to a data collection:
• AC[PU, P, D] - certificate that grants privilege P (one of Read,

Write, or Server) on data collection D to the user whose public
key is PU. AC certificates are signed by the well-known sign-
ing authority.

• D[PU, C, PY] - certificate signed by the user whose public key
is PY to delegate his privileges encoded in certificate C to
another user whose public key is PU.

• R[C, PY] - certificate signed by the user whose public key is
PY to revoke some user’s privileges encoded in certificate C;
the user whose public key is PY must also have originally
signed certificate C.

Revocation certificates are stored by Writes to, and hence prop-
agated with, the data collections to which they apply. Certificates
that revoke server privileges may also be kept by client users to
ensure protection against malicious servers. Users maintain a cer-
tificate purse, which applications running under their identity can
both read and append to.

For a server to determine whether a client has some privilege
for the server’s data, the server first authenticates the client’s iden-
tity using a challenge/response protocol. The client also hands the
server a certificate that asserts the privilege in question. The server
must verify that the certificate is legitimate, that the certificate and
any enclosed certificates for a delegation have not been revoked to
the server’s knowledge, and that it grants the necessary access
rights. Server-to-client and server-to-server authentication and
access control checking is done in a similar fashion. The establish-
ment of mutual trust between a server and a client is performed at
the beginning of a secure session and covers all Read or Write
operations performed as part of that session. A server will preempt
the session if it is notified of a revocation that affects a certificate
associated with the session.

For Write operations, the submitter’s access rights are checked
once by the accepting server, and then again at the primary when
the Write is committed. Servers, other than the primary, when
receiving a Write during anti-entropy trust that the accepting
server has correctly checked the user’s privileges and rejected

Writes with unsuitable access rights. This level of trust is reason-
able since a server ensures that any server with which it performs
anti-entropy is authorized to hold a replica of the data collection.

Having access controls checked for a second time at the pri-
mary server ensures that revocations of Write privileges can be
applied at the primary and guarantees that any “bad” Write
attempting to commit after such a revocation will be rejected. In
particular, revocation of Write access for a malicious user can be
enforced without having to ensure that every server to which such
a user could connect has been notified of the revocation.

Even though a Write’s merge procedure may perform different
Read operations on the data and perform different updates when it
is executed at different times, checking access control once is suf-
ficient because of the whole-data-collection access control model.
More fine-grained access control would require careful design
modifications.

9. Status and Experience

The implementation of the Bayou system has two distinguish-
able components: the client stub and the server. The client stub is a
runtime library linked into applications that use Bayou for storage
management. It provides mechanisms for server location, session
guarantees, secure sessions, Read and Write operations, and mis-
cellaneous utilities. The server implements the Bayou storage
management including the mechanisms for conflict detection and
resolution, server to server communication, and persistent data-
base management. Bayou’s implementation is Posix compliant and
developed in ANSI C so that the same sources run on Intel-based
laptops with Linux and on our regular development platform of
Sun SPARCstations with SunOS.

In the current implementation, ILU [14], a language-indepen-
dent RPC package developed at Xerox PARC, is used for commu-
nication between Bayou clients and servers, as well as between
servers. Server location, by both clients and other servers, uses a
simple decentralized registration and lookup service for key-value
pairs that are made visible across a network via multicast. Bayou
merge procedures are Tcl programs [24] that are run in a Tcl inter-
preter modified to enforce the limits described in Section 5. We
foresee that these components may change as the system evolves.

The two running applications have demonstrated how to use
Bayou’s conflict detection and resolution mechanisms effectively.
Interestingly, one of the lessons we learned immediately from
these applications was that the Bayou server had to supply a per-
database library mechanism for Tcl code invoked by the merge
procedures. Otherwise, Writes are bloated by the large amount of
repeated code in their merge procedures. For both the meeting
room scheduler and the shared bibliographic database manager
only two of roughly 100 lines of Tcl in the original merge proce-
dures changed from one Write to another.

The performance of Bayou depends on several factors, such as
the schema of the data being stored, the amount of data stored at a
server, the location of clients and servers, and the platforms on
which the components are running. This section shows how Bayou
performs for a particular instance of the system: a server and client
for the bibliographic database described in Section 2. The database
is composed of a single table containing 1550 tuples, obtained
from a bibtex source [21]. Each tuple was inserted into the data-
base with a single Bayou Write operation. Results are presented
for five different configurations of the database characterized by
the number of Writes that are tentative. For each configuration we
measured storage requirements and the execution times for three
operations in the system: undoing and redoing the effect of all ten-
tative Writes, executing a client Read operation against the data-
base, and adding a new Write to the database.

10

Table 1 shows that the size of a tentative Write for this database
is about 10 times that of a committed Write. Over half of a tenta-
tive Write’s size is taken by the access control certificate required
for security. The server’s storage requirements decrease signifi-
cantly as data gets committed. When most of the Writes in the
database are committed, its size is almost identical to that of the
bibtex file from which the data was obtained.

Table 2 illustrates the execution times for a Bayou server to
undo and then redo all Writes that are tentative in each configura-
tion of the bibliographic database. Each result corresponds to the
average over 100 executions of the undo/redo operations. The cost
incurred by the server is a function of the number of Writes being
undone and redone. While in general the size of the Tuple Store
may affect the performance of executing a Write, the cost of redo-
ing each tentative Write for this database is close to constant
because dependency checks are selections on the database’s pri-
mary key index, and are therefore independent of the Tuple Store
size. The standard deviations on the Sun tend to be higher than
those for the laptop since the Sun workstation was running a much
higher workload of other applications than the laptop.

.
Table 1: Size of Bayou Storage System for the Bibliographic Database with 1550 Entries

(sizes in Kilobytes)

Number of Tentative Writes
0

(none)
50 100 500

1550
(all)

Write Log
Tuple Store Ckpt
Total
Factor to 368K bibtex source

9
396
405
1.1

129
384
513
1.39

259
371
630
1.71

1302
269
1571
4.27

4028
1

4029
10.95

Table 2: Performance of the Bayou Storage System for Operations on Tentative Writes in the Write Log
(times in milliseconds with standard deviations in parentheses)

Tentative Writes 0 50 100 500 1550

Server running on a Sun SPARC/20 with Sunos

Undo all
(avg. per Write)
Redo all
(avg. per Write)

0

0

31
.62
237
4.74

(6)

(85)

70
.7

611
6.11

(20)

(302)

330
.66

2796
5.59

(155)

(830)

866
.56

7838
5.05

(195)

(1094)

Server running on a Gateway Liberty Laptop with Linux

Undo all
(avg. per Write)
Redo all
(avg. per Write)

0

0

47
.94
302
6.04

(3)

(91)

104
1.04
705
7.05

(7)

(134)

482
.96

3504
7.01

(15)

(264)

1288
.83

9920
6.4

(62)

(294)

Table 3: Performance of the Bayou Client Operations
(times in milliseconds with standard deviations in parentheses)

Server
Client

Sun SPARC/20
same as server

Gateway Liberty
same as server

Sun SPARC/20
Gateway Liberty

Read: 1 tuple
100 tuples

27
206

(19)
(20)

38
358

(5)
(28)

23
244

(4)
(10)

Write: no conflict
with conflict

159
207

(32)
(37)

212
372

(29)
(17)

177
223

(22)
(40)

Table 3 shows the performance of client/server interactions for
the bibliographic database. Measurements were taken for three
computing platform combinations: a Bayou server and biblio-
graphic database client running on the same Sun SPARCstation/
20, both server and client running on the same Gateway Liberty
laptop, and, finally, the server running on the Sun SPARCstation/
20 and the client running on the Gateway Liberty. The numbers for
both Reads and Writes include the costs of session guarantee man-
agement, the RPC proper, and a database query, which for Writes
is part of the dependency check. Additionally, Writes require two
file system synchronization operations and, in case of conflict, the
execution of the merge procedure, which runs another database
query. For Writes involving conflicts, the bibliographic entry key
presented in each Write is not unique and, hence, must be reas-
signed in the merge procedure as discussed in Section 2.2; the key
presented is changed after each set of five Write operations.
Because Reads operate on the in-memory Tuple Store, running
selections on the primary key, and Writes are appended to the
Write Log, execution times across the different database configura-
tions vary little. Hence we present the combined average of the
500 executions of each operation over all configurations.

11

10. Conclusions

Bayou is a storage infrastructure for mobile applications that
relies only on weak connectivity assumptions. To cope with arbi-
trary network partitions, the system is built around pair-wise cli-
ent-server and server-server communications. To provide high
availability, Bayou employs weakly consistent replication where
clients are able to connect to any available server to perform Reads
and Writes. Support for automatic conflict detection and resolution
enables applications to deal with concurrent updates effectively.
The system guarantees eventual consistency by ensuring that all
updates eventually propagate to all servers, that servers perform
updates in a global order, and that any update conflicts are resolved
in a consistent manner at all servers.

Bayou’s management of update conflicts differs significantly
from previous replicated systems, including file systems like Coda
[18] and Ficus [26] as well as Oracle’s recent commercial database
offering [8], in the following main areas:
Non-transparency. Previous systems have tried to support existing

file and database applications by detecting and resolving con-
flicts without the applications’ knowledge. In contrast, Bayou
adopts the philosophy that applications must be aware of and
integrally involved in conflict detection and resolution. Bayou
applications can take advantage of the semantics of their data
to minimize false conflict detections and maximize the ability
to resolve detected conflicts automatically.

Application-specific conflict detection. File systems that rely on
version vectors and database systems that employ optimistic
concurrency control detect update conflicts by observing cli-
ents’ Reads and Writes. Using application-provided rules for
detecting conflicts, called dependency checks, Bayou can
detect a wider class of conflicts, particularly those that depend
on application semantics.

Per-write conflict resolvers. Whereas Coda, Ficus, and Oracle all
permit clients to write custom procedures to resolve conflicts,
these resolvers are stored within the system and invoked based
on the type of the file or data in conflict. In Bayou, each Write
operation includes, in addition to the desired update and
dependency check, a merge procedure that gets executed if the
Write is determined to have caused a conflict. The power of
this approach is demonstrated in applications, such as Bayou’s
meeting room scheduler, where the merge procedure varies for
each Write.

Partial and multi-object updates. Bayou’s Write operations can
atomically perform insertions, partial modifications, and dele-
tions to one or more data objects. This means that, unlike sys-
tems with a whole-file update model where storing the most
recent data contents is sufficient, Bayou servers must apply
every Write operation. Techniques have been devised in Bayou
for propagating, ordering, and undoing/redoing Write opera-
tions to ensure eventual consistency for arbitrary updates and
conflict resolution procedures. These techniques are needed
not only for relational database models, as in the current Bayou
system, but also for file systems supporting record-level
updates and multi-file atomic transactions.

Tentative and stable resolutions. The Bayou system is novel in
maintaining both full and committed views of the data while
permitting clients to read either. Both clients and servers in
Bayou want to know when any conflicts involving a Write
have been fully resolved. Committing a Write ensures that its
outcome is stable, including the resolution of conflicts involv-
ing the Write. The rate at which Writes stabilize is independent
of the probability of conflict. In keeping with the goal of mini-
mal connectivity requirements, Bayou commits Writes using a
primary server.

Security. Bayou executes each merge procedure within a secure
environment in which the only allowable external actions are
reading and writing data using the access credentials of the
user who submitted the conflicting Write. Public-key, digitally-
signed certificates permit authentication and access control
outside the presence of an authentication server or user.

Applications that can best utilize Bayou’s replication scheme
are those for which reading weakly consistent, tentative data is
acceptable and for which the chance of update conflicts is low or
the success of automatic resolution is high. Provided that the pen-
alty for conflict is not excessive, humans would rather deal with
the occasional unresolvable conflict than incur the adverse impact
on availability inherent in systems that avoid conflicts altogether,
such as those based on pessimistic locking. A number of shared
databases, such as phone books and bulletin boards, meet these
characteristics, as do many asynchronous collaborative applica-
tions [22].

We have built an initial version of the Bayou system and our
measurements indicate that its performance and overhead are
acceptable. In particular, running Bayou servers and applications
on today’s laptop computers is reasonable. Our measurements also
confirm that much of the extra overhead imposed by Bayou’s
heavier-weight Write operations is present only so long as a Write
operation is tentative. Committed data is no more expensive than
in other, simpler storage systems. We are also building a number of
applications on top of Bayou and experimenting with them to gain
better insights into their needs.

Issues we are planning to explore further in the context of
Bayou include partial replication, policies for choosing servers for
anti-entropy, building servers with conventional database manag-
ers, alternate data models, and finer grain access control. Our cur-
rent focus is on supporting partial replicas that contain subsets of a
data collection, which is important for some laptop-based applica-
tions and raises a number of difficult problems ranging from char-
acterizing a partial replica to resolving conflicts in a consistent
manner across partial replicas. The next steps in the implementa-
tion will include the development of other applications, such as an
e-mail reader, porting refdbms [11], a widely used shared biblio-
graphic database manager, to run on the Bayou storage system, and
experimenting with wireless connectivity for servers and clients
running on a laptop.

11. Acknowledgments

The Bayou design has benefitted from discussions with a num-
ber of colleagues, including our fellow PARC researchers and Tom
Anderson, Mary Baker, Brian Bershad, Hector Garcia-Molina, and
Terri Watson. We especially thank Brent Welch for his technical
contributions in the early stages of the Bayou project. Atul Adya
and Xinhua Zhou helped implement the first Bayou applications,
from which we learned a tremendous amount. Surendar Chandra
contributed significantly to making the network environment on
our laptops work. Sue Owicki helped guide the final revisions to
this paper. Mark Weiser and Craig Mudge, as managers of the
Computer Science Lab, have been supportive throughout.

12. References

[1] R. Alonso and H. F. Korth. Database system issues in
nomadic computing. Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, Washington,
D.C., May 1993, pages 388-392.

12

[2] K. Birman, A. Schiper, and P. Stephenson. Lightweight,
causal and atomic group multicast. ACM Transactions on
Computer Systems 9(3):272-314, August 1991.

[3] A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing. Communi-
cations of the ACM 25(4):260-274, April 1982.

[4] M. J. Carey and M. Livny. Conflict detection tradeoffs for
replicated data. ACM Transactions on Database Systems
16(4):703-746, December 1991.

[5] B. A. Coan, B. M. Oki, and E. K. Kolodner. Limitations on
database availability when networks partition. Proceedings
Fifth ACM Symposium on Principles of Distributed Comput-
ing, Calgary, Alberta, Canada, August 1986, pages 187-194.

[6] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
a partitioned network: A survey. ACM Computing Surveys
17(3):341-370, September 1985.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance. Proceedings
Sixth Symposium on Principles of Distributed Computing,
Vancouver, B.C., Canada, August 1987, pages 1-12.

[8] A. Downing. Conflict resolution in symmetric replication.
Proceedings European Oracle User Group Conference, Flo-
rence, Italy, April 1995, pages 167-175.

[9] C. Ellis and S. Gibbs. Concurrency control in groupware sys-
tems. Proceedings ACM SIGMOD International Conference
on Management of Data, Portland, Oregon, June 1989, pages
399-407.

[10] R. A. Golding. A weak-consistency architecture for distrib-
uted information services. Computing Systems 5(4):379-405,
Fall 1992.

[11] R. Golding, D. Long, and J. Wilkes. The refdbms distributed
bibliographic database system. Proceedings Winter USENIX
Conference, San Francisco, California, January 1994, pages
47-62.

[12] R.G. Guy, J.S. Heidemann, W. Mak, T.W. Page, Jr., G.J.
Popek, and D. Rothmeier. Implementation of the Ficus repli-
cated file system. Proceedings Summer USENIX Conference,
June 1990, pages 63-71.

[13] T. Imielinski and B. R. Badrinath. Mobile wireless comput-
ing: Challenges in data management. Communications of the
ACM 37(10):18-28, October 1994.

[14] B. Janssen and M. Spreitzer. Inter-Language Unification -
ILU. ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

[15] L. Kalwell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I.
Greif. Replicated document management in a group commu-
nication system. In Groupware: Software for Computer-Sup-
ported Cooperative Work, edited by D. Marca and G. Bock,
IEEE Computer Society Press, 1992, pages 226-235.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. ACM Transactions on Computer Sys-
tems 10(1): 3-25, February 1992.

[17] P. Kumar and M. Satyanarayanan. Log-based directory reso-
lution in the Coda file system. Proceedings Second Interna-
tional Conference on Parallel and Distributed Information
Systems, San Diego, California, January 1993.

[18] P. Kumar and M. Satyanarayanan. Flexible and safe resolu-
tion of file conflicts. Proceedings USENIX Technical Confer-
ence, New Orleans, Louisiana, January 1995, pages 95-106.

[19] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication. ACM Transactions on
Computer Systems 10(4):360-391, November 1992.

[20] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21(7):558-565,
July 1978.

[21] L. Lamport. LaTeX - a document preparation system. Addi-
son-Wesley Publishing Company, 1986.

[22] J. P. Munson and P. Dewan. A flexible object merging frame-
work. Proceedings ACM Conference on Computer Supported
Cooperative Work (CSCW), Chapel Hill, North Carolina,
October 1994, pages 231-242.

[23] R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers. Communica-
tions of the ACM 21(12): 993-999, December 1978.

[24] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Pub-
lishing Company, 1994.

[25] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C.
Kline. Detection of mutual inconsistency in distributed sys-
tems. IEEE Transactions on Software Engineering SE-
9(3):240-246, May 1983.

[26] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek.
Resolving file conflicts in the Ficus file system. Proceedings
Summer USENIX Conference, June 1994, pages 183-195.

[27] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D.C. Steere. Coda: a highly available file
system for a distributed workstation environment. IEEE
Transactions on Computers 39(4):447-459, April 1990.

[28] M. Stonebraker. Concurrency control and consistency of mul-
tiple copies of data in distributed INGRES. IEEE Transac-
tions on Software Engineering SE-5(3):188-194, May 1979.

[29] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer and B. B. Welch. Session guarantees for weakly con-
sistent replicated data. Proceedings Third International Con-
ference on Parallel and Distributed Information Systems,
Austin, Texas, September 1994, pages 140-149.

[30] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The
LOCUS distributed operating system. Proceedings Ninth
Symposium on Operating Systems Principles, Bretton
Woods, New Hampshire, October 1983, pages 49-70.

