
GFS: The Google File System

Brad Karp
UCL Computer Science

CS 0133
25th October 2019



2

Motivating Application: Google

• Crawl the whole web
• Store it all on “one big disk”
• Process users’ searches on “one big CPU”
• More storage, CPU required than one PC 

can offer
• Custom parallel supercomputer: expensive 

(so much so, not really available today)



3

Cluster of PCs as Supercomputer

• Lots of cheap PCs, each with disk and CPU
– High aggregate storage capacity
– Spread search processing across many CPUs

• How to share data among PCs?
• Ivy: shared virtual memory

– Fine-grained, relatively strong consistency at 
load/store level

– Fault tolerance?
• NFS: share fs from one server, many clients

– Goal: mimic original UNIX local fs semantics
– Compromise: close-to-open consistency 

(performance)
– Fault tolerance?



4

Cluster of PCs as Supercomputer

• Lots of cheap PCs, each with disk and CPU
– High aggregate storage capacity
– Spread search processing across many CPUs

• How to share data among PCs?
• Ivy: shared virtual memory

– Fine-grained, relatively strong consistency at 
load/store level

– Fault tolerance?
• NFS: share fs from one server, many clients

– Goal: mimic original UNIX local fs semantics
– Compromise: close-to-open consistency 

(performance)
– Fault tolerance?

GFS: File system for sharing data on clusters, 
designed with Google’s application workload 
specifically in mind



5

Google Platform Characteristics

• 100s to 1000s of PCs in cluster
• Cheap, commodity parts in PCs
• Many modes of failure for each PC:

– App bugs, OS bugs
– Human error
– Disk failure, memory failure, net failure, 

power supply failure
– Connector failure

• Monitoring, fault tolerance, auto-recovery 
essential



6

Google File System: Design Criteria

• Detect, tolerate, recover from failures 
automatically

• Large files, >= 100 MB in size
• Large, streaming reads (>= 1 MB in size)

– Read once
• Large, sequential writes that append

– Write once
• Concurrent appends by multiple clients (e.g., 

producer-consumer queues)
– Want atomicity for appends without synchronization 

overhead among clients



7

GFS: Architecture

• One master server (state replicated on 
backups)

• Many chunk servers (100s – 1000s)
– Spread across racks; intra-rack b/w greater 

than inter-rack
– Chunk: 64 MB portion of file, identified by 64-

bit, globally unique ID
• Many clients accessing same and different 

files stored on same cluster



8

GFS: Architecture (2)



9

Master Server

• Holds all metadata:
– Namespace (directory hierarchy)
– Access control information (per-file)
– Mapping from files to chunks
– Current locations of chunks (chunkservers)

• Manages chunk leases to chunkservers
• Garbage collects orphaned chunks
• Migrates chunks between chunkservers



10

Master Server

• Holds all metadata:
– Namespace (directory hierarchy)
– Access control information (per-file)
– Mapping from files to chunks
– Current locations of chunks (chunkservers)

• Manages chunk leases to chunkservers
• Garbage collects orphaned chunks
• Migrates chunks between chunkservers

Holds all metadata in RAM; very fast 
operations on file system metadata



11

Chunkserver

• Stores 64 MB file chunks on local disk 
using standard Linux filesystem, each with 
version number and checksum

• Read/write requests specify chunk handle 
and byte range

• Chunks replicated on configurable number 
of chunkservers (default: 3)

• No caching of file data (beyond standard 
Linux buffer cache)



12

Client

• Issues control (metadata) requests to 
master server

• Issues data requests directly to 
chunkservers

• Caches metadata
• Does no caching of data

– No consistency difficulties among clients
– Streaming reads (read once) and append 

writes (write once) don’t benefit much from 
caching at client



13

Client API

• Is GFS a filesystem in traditional sense?
– Implemented in kernel, under vnode layer?
– Mimics UNIX semantics?

• No; a library apps can link in for storage 
access

• API:
– open, delete, read, write (as expected)
– snapshot: quickly create copy of file
– append: at least once, possibly with gaps 

and/or inconsistencies among clients



14

Client Read

• Client sends master:
– read(file name, chunk index)

• Master’s reply:
– chunk ID, chunk version number, locations of replicas

• Client sends “closest” chunkserver w/replica:
– read(chunk ID, byte range)
– “Closest” determined by IP address on simple rack-

based network topology
• Chunkserver replies with data



15

Client Write

• Some chunkserver is primary for each chunk
– Master grants lease to primary (typically for 60 sec.)
– Leases renewed using periodic heartbeat messages

between master and chunkservers
• Client asks master for primary and secondary 

replicas for each chunk
• Client sends data to replicas in daisy chain

– Pipelined: each replica forwards as it receives
– Takes advantage of full-duplex Ethernet links



16

Client Write (2)

• All replicas acknowledge data write to client
• Client sends write request to primary
• Primary assigns serial number to write request,

providing ordering
• Primary forwards write request with same serial 

number to secondaries
• Secondaries all reply to primary after completing 

write
• Primary replies to client



17

Client Write (3)



18

Client Record Append

• Google uses large files as queues between 
multiple producers and consumers

• Same control flow as for writes, except…
• Client pushes data to replicas of last chunk of 

file
• Client sends request to primary
• Common case: request fits in current last chunk:

– Primary appends data to own replica
– Primary tells secondaries to do same at same byte 

offset in theirs
– Primary replies with success to client



19

Client Record Append (2)

• When data won’t fit in last chunk:
– Primary fills current chunk with padding
– Primary instructs other replicas to do same
– Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client 
retries operation
– So replicas of same chunk may contain different 

data—even duplicates of all or part of record data
• What guarantee does GFS provide on 

success?
– Data written at least once in atomic unit



20

GFS: Consistency Model

• Changes to namespace (i.e., metadata) are 
atomic
– Done by single master server!
– Master uses log to define global total order of 

namespace-changing operations
• Data changes more complicated
• Consistent: file region all clients see as same, 

regardless of replicas they read from
• Defined: after data mutation, file region that is 

consistent, and all clients see that entire 
mutation



21

GFS: Data Mutation Consistency

• Record append completes at least once, at 
offset of GFS’ choosing

• Apps must cope with Record Append 
semantics

Write Record Append

serial 
success

defined
defined

interspersed with 
inconsistentconcurrent 

successes
consistent 

but 
undefined

failure inconsistent



22

Applications and
Record Append Semantics

• Applications should include checksums in 
records they write using Record Append
– Reader can identify padding / record 

fragments using checksums
• If application cannot tolerate duplicated 

records, should include unique ID in 
record
– Reader can use unique IDs to filter duplicates



23

Logging at Master

• Master has all metadata information
– Lose it, and you’ve lost the filesystem!

• Master logs all client requests that modify 
metadata to disk sequentially

• Replicates log entries to remote backup 
servers

• Only replies to client after log entries safe 
on disk on self and backups!



24

Chunk Leases and Version Numbers

• If no outstanding lease when client 
requests write, master grants new one

• Chunks have version numbers
– Stored on disk at master and chunkservers
– Each time master grants new lease, 

increments version, informs all replicas
• Master can revoke leases

– e.g., when client requests rename or 
snapshot of file



25

What If the Master Reboots?

• Replays log from disk
– Recovers namespace (directory) information
– Recovers file-to-chunk-ID mapping

• Asks chunkservers which chunks they hold
– Recovers chunk-ID-to-chunkserver mapping

• If chunk server has older chunk, it’s stale
– Chunk server down at lease renewal

• If chunk server has newer chunk, adopt its 
version number
– Master may have failed while granting lease



26

What if Chunkserver Fails?

• Master notices missing heartbeats
• Master decrements count of replicas for all 

chunks on dead chunkserver
• Master re-replicates chunks missing 

replicas in background
– Highest priority for chunks missing greatest 

number of replicas



27

File Deletion

• When client deletes file:
– Master records deletion in its log
– File renamed to hidden name including deletion 

timestamp
• Master scans file namespace in background:

– Removes files with such names if deleted for longer 
than 3 days (configurable)

– In-memory metadata erased
• Master scans chunk namespace in background:

– Removes unreferenced chunks from chunkservers



What About Small Files?

• Most files stored in GFS are multi-GB; a 
few are shorter

• Instructive case: storing a short 
executable in GFS, executing on many 
clients simultaneously
– 3 chunkservers storing executable 

overwhelmed by many clients’ concurrent 
requests

– App-specific fix: replicate such files on more 
chunkservers; stagger app start times

28



Write Performance (Distinct Files)

29



Record Append Performance 
(Same File)

30



31

GFS: Summary
• Success: used actively by Google to support 

search service and other applications
– Availability and recoverability on cheap hardware
– High throughput by decoupling control and data
– Supports massive data sets and concurrent appends

• Semantics not transparent to apps
– Must verify file contents to avoid inconsistent regions, 

repeated appends (at-least-once semantics)
• Performance not good for all apps

– Assumes read-once, write-once workload (no client 
caching!)


