
Paxos: Agreement for Replicated 
State Machines

Brad Karp
UCL Computer Science

CS 0133
21st October 2019



2

Review: Types of Distributedness

• NFS: distributed to share data across 
clients through filesystem interface

• Ivy: distributed to provide illusion of 
seamless shared memory across clients

• 2PC: distributed because different nodes 
have different functions (e.g., Bank A, 
Bank B)

• What about distributedness to make 
system more available?



3

Centralization: Single Points of Failure

• Consider what happens when nodes fail:
– NFS server?
– Bank A?
– CPU that owns a page in Ivy?

• In all these systems, there is single node 
with “authoritative” copy of some data

• Single point of failure: kill one node, 
clients may grind to halt

• How can we do better?



4

Replication

• Replicate data on several servers
• If server(s) fail, hopefully others still 

running; data still available, clients can 
still make progress

• Consistency?
– Informally speaking, all replicas should hold 

identical copies of data
– So as users’ requests modify data, must 

somehow keep all data identical on all replicas



5

2PC vs. Replication

• 2PC works well if different nodes play different 
roles (e.g., Bank A, Bank B)

• 2PC isn’t perfect
– Must wait for all sites and TC to be up
– Must know if each site voted yes or no
– TC must be up to decide
– Doesn’t tolerate faults well; must wait for repair

• Can clients make progress when some nodes 
unreachable?
– Yes! When data replicated.



6

State Machine Replication

• Any server essentially a state machine
– Disk, RAM, CPU registers are state
– Instructions transition among states
– User requests cause instructions to be 

executed, so cause transitions among states
• Replicate state machine on multiple hosts

– Every replica must see same operations in 
same order

– If deterministic, replicas end in same state



7

Ensuring All Replicas See
Operations in Same Order

• Nominate one “special” server: primary
• Call all other servers backups
• Clients send all operations to current 

primary
• Primary’s role:

– Chooses order for clients’ operations
– Sends clients’ operations to backups
– Replies to clients



8

Ensuring All Replicas See
Operations in Same Order

• Nominate one “special” server: primary
• Call all other servers backups
• Clients send all operations to current 

primary
• Primary’s role:

– Chooses order for clients’ operations
– Sends clients’ operations to backups
– Replies to clients

Didn’t we say the whole point was availability, and 
fault-tolerance?
What if primary fails?



9

Primary Failure

• Last operation received by primary may not be 
complete

• Need to pick new primary
• Can’t allow two simultaneous primaries! (Why?)
• Define: lowest-numbered live server is primary

– After failure, everyone pings everyone
– Does everyone now know who new primary is?

• Maybe not:
– Pings may be lost: two primaries
– Pings may be delayed: two primaries
– Network partition: two primaries



10

Idea: Majority Consensus

• Require a majority of nodes to agree on 
primary

• At most one network partition can contain 
majority

• If pings lost, and thus two potential 
primaries, majorities must overlap
– Node(s) in overlap can see both potential 

primaries, raise alarm about non-agreement!



11

Technique: View Change Algorithm

• Entire system goes through sequence of 
views

• View: {view #, set of participant nodes}
• View change algorithm must ensure 

agreement on unique successor for each 
view

• Participant set within view allows all nodes 
to agree on primary
– Same rule: lowest-numbered ID in set is 

primary



12

Technique: View Change Algorithm

• Entire system goes through sequence of 
views

• View: {view #, set of participant nodes}
• View change algorithm must ensure 

agreement on unique successor for each 
view

• Participant set within view allows all nodes 
to agree on primary
– Same rule: lowest-numbered ID in set is 

primary

If two nodes agree on view, they will agree 
on primary



13

View Change Requires
Fault-Tolerant Agreement

• Envision view as opaque value
• Want all nodes to agree on same value 

(i.e., same view)
• At most one value may be chosen
• Want to agree despite lost messages and 

crashed nodes
• Can’t guarantee to agree!

– Can guarantee not to agree on different 
values!

– i.e., guarantee safety, but not liveness



14

Paxos:
Fault-Tolerant Agreement Protocol

• Protocol eventually succeeds provided
– Majority of participants reachable
– Participants know how to generate value to 

agree on
• i.e., Paxos doesn’t determine the value nodes try 

to agree on—value is an opaque input to Paxos

• Only widely used algorithm for fault-
tolerant agreement in state machine 
replication



15

Review: State Machine Replication, 
Primary-Backup, Paxos

• How did we get here?
• Want to replicate a system for availability
• View system as state machine; replicate the 

state machine
• Ensure all replicas see same ops in same order
• Primary orders requests, forwards to replicas
• All nodes must agree on primary
• All nodes must agree on view

– Participant with lowest address in view is primary
• Paxos guaranteed to complete only when all 

nodes agree on input (in this case, input is view)



16

Overview of Paxos

• One (or more) nodes decide to be leader
• Leader chooses proposed value to agree on

– (In our case, value is view: {view #, participant set})
• Leader contacts Paxos participants, tries to 

assemble majority
– Participants can be fixed set of nodes (configured)
– Or can be all nodes in old view (including unreachable 

nodes)
• If a majority respond, successful agreement



17

Agreement is Hard!

• What if two nodes decide to be leader?
• What if network partition leads to two 

leaders?
• What if leader crashes after persuading 

only some nodes?
• What if leader got majority, then failed, 

without announcing result?
– Or announced result to only a few nodes?
– New leader might choose different 

value, despite previous agreement



18

Paxos: Structure

• Three phases in algorithm
• May need to restart if nodes fail or 

timeouts waiting for replies
• State in each node running Paxos, per-

value (view):
– na: greatest n accepted by node (init: -1)
– va: value received together with na (init: nil)
– nh: greatest n seen in Q1 message (init: -1)
– done: leader says agreement reached; can 

use new value (i.e., start new view) (init: 0)



19

Paxos: Phase 1

A node (maybe more than one) decides to be 
leader, then it
picks proposal number, n

must be unique, good if higher than any 
known proposal number

use last known proposal number + 1, 
append node’s own ID

sends Q1(n) message to all nodes (including 
self)

if node receives Q1(n) and n > nh
nh = n
send reply R1(na, va) message



20

Paxos: Phase 2

if leader receives R1 messages from majority of 
nodes (including self)
if any R1(n, v) contained a value (v)

v = value sent with highest n
else leader gets to choose a value (v)

v = {old view# + 1, set of pingable nodes}
send Q2(n, v) message to all responders

if node receives Q2(n, v) and n >= nh
nh = na = n
va = v
send reply R2() message



21

Paxos: Phase 3

if leader receives R2() messages from 
majority of protocol participants
send Q3() message to all participants

if node receives Q3()
done = true
agreement reached; agreed-on value is va
(primary is lowest-numbered node in 

participant list within va)



22

Paxos: Timeouts

• All nodes wait a maximum period 
(timeout) for messages they expect

• Upon timeout, a node declares itself a 
leader and initiates a new Phase 1 of 
algorithm



23

Paxos with One Leader, No Failures:
Phase 1

0 1 2 3 4

na

va

nh

done

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F



24

Paxos with One Leader, No Failures:
Phase 1

0 1 2 3 4

na

va

nh

done

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

n = 11



25

Paxos with One Leader, No Failures:
Phase 1

0 1 2 3 4

na

va

nh

done

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

n = 11
“Q1(11)”



26

Paxos with One Leader, No Failures:
Phase 1

0 1 2 3 4

na

va

nh

done

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

-1

nil

-1

F

n = 11
“Q1(11)”



27

Paxos with One Leader, No Failures:
Phase 1

0 1 2 3 4

na

va

nh

done

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F



28

Paxos with One Leader, No Failures:
Phase 1

0 1 2 3 4

na

va

nh

done

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

“R1(-1, nil)”



29

Paxos with One Leader, No Failures:
Phase 2

0 1 2 3 4

na

va

nh

done

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

R1 from
majority!
all v’s nil



30

Paxos with One Leader, No Failures:
Phase 2

0 1 2 3 4

na

va

nh

done

-1

nil

11

F

-1

{1, {0, …, 4}}

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F



31

Paxos with One Leader, No Failures:
Phase 2

0 1 2 3 4

na

va

nh

done

-1

nil

11

F

-1

{1, {0, …, 4}}

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

“Q2(11,
{1, {0, …, 4}})”



32

Paxos with One Leader, No Failures:
Phase 2

0 1 2 3 4

na

va

nh

done

-1

nil

11

F

-1

{1, {0, …, 4}}

11

F

-1

nil

11

F

-1

nil

11

F

-1

nil

11

F

“Q2(11,
{1, {0, …, 4}})”



33

Paxos with One Leader, No Failures:
Phase 2

0 1 2 3 4

na

va

nh

done

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F



34

Paxos with One Leader, No Failures:
Phase 2

0 1 2 3 4

na

va

nh

done

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

“R2”



35

Paxos with One Leader, No Failures:
Phase 3

0 1 2 3 4

R2 from
majority!

na

va

nh

done

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F



36

Paxos with One Leader, No Failures:
Phase 3

0 1 2 3 4

na

va

nh

done

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

11

{1, {0, …, 4}}

11

F

“Q3”



37

Paxos with One Leader, No Failures:
Phase 3

0 1 2 3 4

na

va

nh

done

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T



38

Paxos with One Leader, No Failures:
Phase 3

0 1 2 3 4

na

va

nh

done

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

11

{1, {0, …, 4}}

11

T

All nodes agree on view {1,{0, …, 4}}
New primary: lowest ID, so node 0



39

Paxos: Number of Leaders

• Clearly, when no failures, no message 
losses, and one leader, Paxos reaches 
agreement

• How can one ensure that with high 
probability, only one leader?
– Every node must be willing to become leader 

in case of failures
– Every node should delay random period after 

realizing pingable nodes have changed, or 
delay own ID x some constant



40

Paxos: Ensuring Agreement

• When would non-agreement occur?
– When nodes with different va receive Q3

• Safety goal:
– If Q3 could have been sent, future Q3s 

guaranteed to reach nodes with same va



41

Risk: More Than One Leader

• Can occur after timeout during Paxos 
algorithm, partition, lost packets

• Two leaders must use different n in their 
Q1()s, by construction of n

• Suppose two leaders proposed n = 10 and 
n = 11



42

More Than One Leader (2)

• Case 1: proposer of 10 didn’t receive 
R2()s from majority of participants
– Proposer never will receive R2()s from 

majority, as no node will send R2() in reply to 
Q2(10,…) after seeing Q1(11)

– Or proposer of 10 may be in network partition 
with minority of nodes



43

More than One Leader (3)

• Case 2: proposer of 10 (10) did receive R2()s 
from majority of participants
– Thus, 10’s originator may have sent Q3()!
– But 10’s majority must have seen 10’s Q2() before 

11’s Q1()
• Otherwise, would have ignored 10’s Q2, and no majority 

could have resulted
– Thus, 11 must receive R1 from at least one node that 

saw 10’s Q2
– Thus, 11 must be aware of 10’s value
– Thus, 11 would have used 10’s value, rather than 

creating one!



44

More than One Leader (3)

• Case 2: proposer of 10 (10) did receive R2()s 
from majority of participants
– Thus, 10’s originator may have sent Q3()!
– But 10’s majority must have seen 10’s Q2() before 

11’s Q1()
• Otherwise, would have ignored 10’s Q2, and no majority 

could have resulted
– Thus, 11 must receive R1 from at least one node that 

saw 10’s Q2
– Thus, 11 must be aware of 10’s value
– Thus, 11 would have used 10’s value, rather than 

creating one!

Result: agreement on 10’s proposed value!



45

Risk: Leader Fails
Before Sending Q2()s

• Some node will time out and become a 
leader

• Old leader didn’t send any Q3()s, so no 
risk of non-agreement caused by old 
leader

• Good, but not required, that new leader 
chooses higher n for proposal
– Otherwise, timeout, some other leader will try
– Eventually, will find leader who knew old n 

and will use higher n



46

Risks: Leader Failures

• Suppose leader fails after sending minority 
of Q2()s
– Same as two leaders!

• Suppose leader fails after sending majority 
of Q2()s
– i.e., potentially after reaching agreement!
– Also same as two leaders!



47

Risk: Node Fails After Receiving Q2(), 
and After Sending R2()

• If node doesn’t restart, possible timeout in 
Phase 3, new leader

• If node does restart, it must remember va
and na on disk!
– Leader might have failed after sending a few 

Q3()s
– New leader must choose same value
– This failed node may be only node in 

intersection of two majorities!



48

Paxos: Summary

• Original goal: replicated state machines!
– Want to continue, even if some nodes not 

reachable
• After each failure, perform view change

using Paxos agreement
• i.e., agree on exactly which nodes in new 

view
• Thus, everyone can agree on new primary
• No discussion here of how to render data

consistent across replicas!


