Remote Procedure Call (RPC) and
Transparency

Brad Karp
UCL Computer Science

A

I

CS 0133
oth October 2019

Transparency in Distributed Systems

e Programmers accustomed to writing code for a
single box

e Transparency: retain “feel” of writing for one
box, when writing code that runs distributedly

e Goals:
— Preserve original, unmodified client code
— Preserve original, unmodified server code

— RPC should glue together client and server without
changing behavior of either

— Programmer shouldn’t have to think about network

Transparency in Distributed Systems

: How achievable is true transparency?
We will use NFS as a case study.
But first, an introduction to RPC itself.

_

=4

e (Goals:
— Preserve original, unmodified client code
— Preserve original, unmodified server code

— RPC should glue together client and server without
changing behavior of either

— Programmer shouldn’t have to think about network

Remote Procedure Call: Central Idea

e Within a single program, running on a
single box, well-known notion of
procedure call (aka function call):

— Caller pushes arguments onto stack

— Jumps to address of callee function

— Callee reads arguments from stack

— Callee executes, puts return value in register
— Callee returns to next instruction in caller

e RPC aim: let distributed programming look
no different from local procedure calls

RPC Abstraction

e Library makes an API available to locally
running applications

o et servers export their local APIs to be
accessible over the network, as well

e On client, procedure call generates
request over network to server

e On server, called procedure executes,
result returned in response to client

RPC Implementation Details

e Data types may be different sizes on different
machines (e.g., 32-bit vs. 64-bit integers)
e Little-endian vs. big-endian machines

— Big-endian: 0x11223344 is 0x11, 0x22, 0x33, 0x44
— Little-endian is 0x44, 0x33, 0x22, 0x11

e Need mechanism to pass procedure parameters
and return values in machine-independent
fashion

e Solution: Interface Description Language (IDL)

Interface Description Languages

e Compile interface description, produces:

— Types in native
— Code to marsha

machine-neutra
(and vice-versa)

anguage (e.g., Java, C, C++)

native data types into
byte streams for network

— Stub routines on client to forward local
procedure calls as requests to server

e For Sun RPC, IDL is XDR (eXternal Data

Representation)

Example: Sun RPC and XDR

e Define API for procedure calls between client
and server in XDR file, e.qg., proto.x

e Compile: rpcgen proto.x, producing
- proto.h: RPC procedure prototypes, argument
and return value data structure definitions

- proto_clnt.c: per-procedure client stub code
to send RPC request to remote server

- proto_svc.c: server stub code to dispatch RPC
request to specified procedure

- proto_xdr.c: argument and result
marshaling/unmarshaling routines, host-
network/network-host byte order conversions

Example: Sun RPC and XDR

e Define API for procedure calls between client
and server in XDR file, e.qg., proto.x
e Compile: rpcgen proto.x, producing

- proto.h: RPC procedure prototypes, argument
and return value data structure definitions

Let's consider a simple example... I
— proto svc.c: server stub code to dispatch
request to specified procedure
- proto xdr.c: argument and result

marshaling/unmarshaling routines, host-
network/network-host byte order conversions

Sun RPC and XDR:
Programming Caveats

e Server routine return values must always be
pointers (e.g., int *, not int)
— should declare return value static in server routine
e Arguments to server-side procedures are
pointers to temporary storage

— to store arguments beyond procedure end, must copy
data, not merely pointers

— in these cases, typically allocate memory for copy of
argument using malloc ()

e If new to C, useful background in Mark Handley’s
“C for Java programmers” tutorial:

— https://moodle-snapshot.ucl.ac.uk/16-
17/mod/resource/view.php?id=430247

— § 2.9 — 2.13 describe memory allocation

10

https://moodle-snapshot.ucl.ac.uk/16-17/mod/resource/view.php?id=430247

Sun RPC and XDR:
Programming Caveats

e Server routine return values must always be
pointers (e.g., int *, not int)
— should declare return value static in server routine

e Arguments to server-side procedures are
pointers to temporary storage

— to store arguments beyond procedure end, must copy

Now, back to our NFS case study... J

e If new to C, useful backg'r'ound in Mark Handley’s
“C for Java programmers” tutorial:

— https://moodle-snapshot.ucl.ac.uk/16-
17/mod/resource/view.php?id=430247

— § 2.9 — 2.13 describe memory allocation

11

https://moodle-snapshot.ucl.ac.uk/16-17/mod/resource/view.php?id=430247

“"Non-Distributed” NFS

e Applications

o Syscalls

o Kernel filesystem implementation
e Local disk

e RPC must “split up” the above
o Where does NFS make the split?

12

NFS Structure on Client

user programs

file system calls

local file system

NF'S client

4 user/kernel interface

- vnode interface

e NFS splits client at vhode interface, below syscall

implementation

e Client-side NFS code essentially stubs for system

calls:

— Package up arguments, send them to server

13

NFS and Syntactic Transparency

e Does NFS preserve the syntax of the client
function call API (as seen by applications)?

— Yes!

— Arguments and return values of system calls
not changed in form or meaning

14

NFS and Server-Side Transparency

e Does NFS require changes to pre-existing
filesystem code on server?

— Some, but not much.

— NFS adds in-kernel threads (to block on 1/0,
much like user-level processes do)

— Server filesystem implementation changes:
e File handles over wire, not file descriptors
e Generation numbers added to on-disk i-nodes

e User IDs carried as arguments, rather than implicit
In process owner

e Support for synchronous updates (e.qg., for WRITE)

15

NFS and File System Semantics

e You don't get transparency merely by
preserving the same API

e System calls must mean the same thing!

o If they don't, pre-existing code may
compile and run, but vyield incorrect
results!

e Does NFS preserve the UNIX filesystem’s
semantics?

e No! Let us count the ways...

16

NFS’s New Semantics: Server Failure

On one box, open() only fails if file doesn’t exist
Now open() and all other syscalls can fail if
server has died!

— Apps must know how to retry or fail gracefully

Or open() could hang forever—never the case
before!

— Apps must know how to set own timeouts if don't
want to hang

This is not a quirk of NFS—it’s fundamental!

17

NFS’'s New Semantics:
close() Might Fail

e Suppose server out of disk space

e But client WRITEs asynchronously, only on
close(), for performance

e Client waits in close() for WRITEs to finish

e close() never returns error for local fs!

— Apps must check not only write(), but also
close(), for disk full!

e Reason: NFS batches WRITEs

— If WRITEs were synchronous, close() couldn't
fill disk, but performance would be awful

18

NFS’s New Semantics: Errors Returned
for Successful Operations

e Suppose you call rename(“a”, "b") on file in
NFS-mounted fs

e Suppose server completes RENAME, crashes
before replying

NFS client resends RENAME
“a” doesn't exist; error returned!
Never happens on local fs...

Side effect of statelessness of NFS server:

— Server could remember all ops it's completed, but
that's hard

— Must keep that state consistent and persistent across
crashes (i.e., on disk)!

— Update the state first, or perform the operation first?
19

NFS’s New Semantics:
Deletion of Open Files

e Client A open()s file for reading

e Client B deletes it while A has it open

e Local UNIX fs: A’s subsequent reads work
e NFS: A’s subsequent reads fail

e Side effect of statelessness of NFS server:

— Could have fixed this—server could track
open()s

— AFS tracks state required to solve this
problem

20

Semantics vs. Performance

e Insight: preserving semantics
produces poor performance

e e.g., for write() to local fs, UNIX can delay
actual write to disk

— Gather writes to multiple adjacent blocks, and
so write them with one disk seek

— If box crashes, you lose both the running app
and its dirty buffers in memory

e Can we delay WRITEs in this way on NFS
server?

21

NFS Server and WRITE Semantics

o Suppose WRITE RPC stores client data in buffer
in memory, returns success to client

e Now server crashes and reboots
— App doesn’t crash—in fact, doesn't notice!
— And written data mysteriously disappear!
e Solution: NFS server does synchronous WRITES

— Doesn’t reply to WRITE RPC until data on disk

— If writep returns on client, even if server crashes,
data safe on disk

— Per previous lecture: 3 seeks, 30 ms, 22 WRITES/s,
180 KB/s max throughput!

— < 10% of max disk throughput
e NFS v3 and AFS fix this problem (more complex)

Semantics vs. Performance (2)

Insight: improving performance changes
consistency semantics!

Suppose clients cache disk blocks when they
read them

But writes always go through to server

Not enough to get consistency!
— Write editor buffer on one box, make on other
— Do make/compiler see changes?

Ask server “has file changed?” at every read()?
— Almost as slow as just reading from server...

23

NFS: Semantics vs. Performance

e NFS’ solution: close-to-open consistency
— Ask server “has file changed?” at each open()

— Don't ask on each read() after open()
— If B changes file while A has it open, A doesn't see
changes
e OK for emacs/make, but not always what you
want:
- make > make.log (On server)

- tail -f make.log (on my desktop)

e Side effect of statelessness of NFS server
— Server could track who has cached blocks on reads
— Send “invalidate” messages to clients on changes

24

Security Radically Different

Local system: UNIX enforces read/write
protections per-user
— Can't read my files without my password

How does NFS server authenticate user?

Easy to send requests to NFS server, and to
forge NFS replies to client

Does it help for server to look at source IP
address?

So why aren’t NFS servers ridiculously
vulnerable?
— Hard to guess correct file handles!

25

Security Radically Different

e Local system: UNIX enforces read/write
protections per-user

— Can't read my files without my password
e How does NFS server authenticate user?

e Easy to send requests to NFS server, and to
forge NFS replies to client

e Does it help for server to look at source IP
address?

g Fixable: SFS, AFS, some NFS versions use
cryptography to authenticate client

L Very hard to reconcile with statelessness!

NFS Still Very Useful

e People fix programs to handle new
semantics

— Must mean NFS useful enough to motivate
them to do so!

e People install firewalls for security

e NFS still gives many advantages of
transparent client/server

27

Multi-Module Distributed Systems

e NFS in fact rather simple:
— One server, one data type (file handle)

e What if symmetric interaction, many data types?

e Say you build system with three modules in one
address space:

— Web front end, customer DB, order DB

e Represent user connections with object:
class connection {

int £fd; int state; char *buf; }

e Easy to pass object references among three
modules (e.qg., pointer to current connection)

28

Multi-Module Distributed Systems

e NFS in fact rather simple:
— One server, one data type (flle handle)

\AJ

7

.

What if we split system into three separate
servers?

— Web froﬁt end, customer DB, order DB

e Represent user connections with object:
class connection {

int £fd; int state; char *buf; }

e Easy to pass object references among three
modules (e.qg., pointer to current connection)

29

Multi-Module Systems: Challenges

How do you pass class connection
between servers?
— Could RPC stub just send object’s elements?

What if processing flow for connection goes:
order DB -> customer DB -> front end to send
reply?

Front end only knows contents of passed
connection object; underlying connection may
have changed!

Wanted to pass object references, not object
contents

NFS solution: file handles

— No support from RPC to help with this!

30

RPC: Failure Happens

New failure modes not seen in simple, same-
host procedure calls:

— Remote server failure
— Communication (network) failure

RPCs can return “failure” instead of results
Possible failure outcomes:

Procec
Procec
Procec

Procec

ure didn't execute

ure executed once

ure executed multiple times
ure partially executed

General

y, “at most once” semantics preferred

31

Achieving At-Most-Once Semantics

e Risk: Request message lost
— Client must retransmit requests when no reply
received
e Risk: Reply message lost

— Client may retransmit previously executed
request

— OK when operations idempotent; some aren't,
though (e.qg., "charge customer”)

— Server can keep “replay cache” to reply to
repeated requests without re-executing them

32

Summary: RPC Non-Transparency

e Partial failure, network failure
e Latency

o Efficiency/semantics tradeoff
e Security—rarely transparent!

e Pointers: write-sharing, portable object
references

e Concurrency (if multiple clients)

e Solutions:
— Expose “remoteness” of RPC to application, or

— Work harder to achieve transparent RPC
33

Conclusions

e Of RPC's goals, automatic marshaling
most successful

e Mimicking procedure call interface in
practice not so useful

o Attempt at full transparency mostly a
failure!

— (You can try hard: consider Java RMI)

e Next time: implicit communication through
distributed shared memory!

34

