
Background: I/O Concurrency

Brad Karp
UCL Computer Science

CS 0133
2nd October 2019



2

Outline

• “Worse Is Better” and Distributed Systems

• Problem: Naïve single-process server 
leaves system resources idle; I/O blocks
– Goal: I/O concurrency
– Goal: CPU concurrency

• Solutions
– Multiple processes
– One process, many threads
– Event-driven I/O (not in today’s lecture)



3

Review: How Do Servers Use Syscalls?

• Consider server_1() web server (in 
handout)

time

time

time
application CPU

disk syscalls

network syscalls

R

R W W

R

C



4

Review: How Do Servers Use Syscalls?

• Consider server_1() web server (in 
handout)

time

time

time
application CPU

disk syscalls

network syscalls

Server waits for each resource in turn
Each resource largely idle
What if there are many clients?

R

R W W

R

C



5

Performance and Concurrency

• Under heavy load, server_1():
– Leaves resources idle
– …and has a lot of work to do!

• Why?
– Software poorly structured!
– What would a better structure look like?



6

Solution: I/O Concurrency

• Can we overlap I/O with other useful 
work? Yes:
– Web server: if files in disk cache, I/O wait 

spent mostly blocked on write to network
– Networked file system client: could compile 

first part of file while fetching second part
• Performance benefits potentially huge

– Say one client causes disk I/O, 10 ms
– If other clients’ requests in cache, could serve 

100 other clients during that time!



7

One Process
May Be Better Than You Think

• OS provides I/O concurrency to 
application transparently when it can, e.g.,
– Filesystem does read-ahead into disk buffer 

cache; write-behind from disk buffer cache
– Networking code copies arriving packets into 

application’s kernel socket buffer; copies app’s 
data into kernel socket buffer on write()



8

I/O Concurrency with
Multiple Processes

• Idea: start new UNIX process for each client 
connection/request

• Master process assigns new connections to child 
processes

• Now plenty of work to keep system busy!
– One process blocks in syscall, others can process 

arriving requests
• Structure of software still simple

– See server_2() in webserver.c
– fork() after accept()
– Otherwise, software structure unchanged!



9

Multiple Processes: More Benefits

• Isolation
– Bug while processing one client’s request 

leaves other clients/requests unaffected
– Processes do interact, but OS arbitrates (e.g., 

“lock the disk request queue”)
• CPU concurrency for “free”

– If more than one CPU in box, each process 
may run on one CPU



10

CPU Concurrency

• Single machine may have multiple CPUs, one 
shared memory
– Symmetric Multiprocessor (SMP) PCs
– Intel Core Duo

• I/O concurrency tools often help with CPU 
concurrency
– But way more work for OS designer!

• Generally, CPU concurrency way less important 
than I/O concurrency
– Factor of 2X, not 100X
– Very hard to program to get good scaling
– Easier to buy 2 machines (see future lectures!)



11

Problems with Multiple Processes

• fork() may be expensive
– Memory for new address space
– 300 us minimum on modern PC running UNIX

• Processes fairly isolated by default
– Memory not shared
– How do you build web cache on server visible 

to all processes?
– How do you simply keep statistics?



12

Concurrency with Threads

• Similar to multiple processes
• Difference: one address space

– All threads share same process’ memory
– One stack per thread, inside process

• Seems simple: single-process structure!
• Programmer needs to use locks
• One thread can corrupt another (i.e., no 

cross-request isolation)



13

Concurrency with Threads

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App20 0

N
M

t1
stack

t2
stack



14

Threads: Low-Level Details Are Hard!

• Suppose thread calls read() (or other 
blocking syscall)
– Does whole process block until I/O done?
– If so, no I/O concurrency!

• Two solutions:
– Kernel-supported threads
– User-supported threads



15

Kernel-Supported Threads

• OS kernel aware of each thread
– Knows if thread blocks, e.g., disk read wait
– Can schedule another thread

• Kernel requirements:
– Per-thread kernel stack
– Per-thread tables (e.g., saved registers)

• Semantics:
– Per-process: address space, file descriptors
– Per-thread: user stack, kernel stack, kernel 

state



16

Kernel-Supported Threads

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App20 0

N
M

t1
stack

stack,
table

t2
stack

stack, 
table



17

Kernel Threads: Trade-Offs

• Kernel can schedule one thread per CPU
– Fits our goals well: both CPU and I/O concurrency

• But kernel threads expensive, like processes:
– Kernel must help create each thread
– Kernel must help with thread context switch!

• Which thread took a page fault?
– Lock/unlock must invoke kernel, but heavily used

• Kernel threads not portable; implementation 
heavily tailored to each OS…

• …though practically all modern OSes now 
include a kernel thread implementation!



18

User-Level Threads

• Purely inside user process; kernel 
oblivious

• Scheduler within user process for process’ 
own threads
– In addition to kernel’s process scheduler

• User-level scheduler must
– Know when thread makes blocking syscall
– Not block process; switch to another thread
– Know when I/O done, to wake up original 

thread



19

User-Level Thread Implementation

Kernel

User Space

Filesystem

Disk Driver

Hardware

App1 App20 0

N
M

t1
stack

t2
stack

Thread Scheduler

Process Scheduler



20

User-Level Threads: Details

• Apps linked against thread library
• Library contains “fake” read(), write(), 

accept(), &c. syscalls
• Library can start non-blocking syscall 

operations
• Library marks threads as waiting, switches 

to runnable thread
• Kernel notifies library of I/O completion 

and other events; library marks waiting 
thread runnable



21

User-Level Threads: read() Example

read() {
tell kernel to start read;
mark thread waiting for read;
sched();

}
sched() {

ask kernel for I/O completion events;
mark corresponding threads runnable;
find runnable thread;
restore registers and return;

}



22

User-Level Threads:
Event Notification

• Events thread library needs from kernel:
– new network connection
– data arrived on socket
– disk read completed
– socket ready for further write()s

• Resembles miniature OS inside process!
• Problem: user-level threads demand 

significant kernel support:
– non-blocking system calls
– uniform event delivery mechanism



23

Event Notification in Typical OSes

• Usually, event notification only partly 
supported; e.g., in UNIX:
– new TCP connections, arriving TCP/pipe/tty

data: YES
– filesystem operation completion: NO

• Similarly, not all syscalls can be started 
without waiting, e.g., in UNIX:
– connect(), read()/write() on socket
– open(), stat(): NO
– read() from disk: SOMETIMES (e.g., 

aio_read())



• Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

} 24

Non-blocking System Calls:
Hard to Implement



• Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

} 25

Non-blocking System Calls:
Hard to Implement

Why not just return to user program instead 
of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?



• Typical syscall implementation, inside the kernel, 
e.g., for read() (sys_read.c):

sys_read(fd, user_buffer, n) {
// read the file’s i-node from disk
struct inode *i = alloc_inode();
start_disk(…, i);
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->…);
start_disk(…, b);
wait_for_disk(b);
copy_to_user(b, user_buffer);

} 26

Non-blocking System Calls:
Hard to Implement

Why not just return to user program instead 
of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?

Problem: Keeping state for complex, multi-
step operations



27

User-Threads:
Implementation Choices

• Live with only partial support for user-level 
threads

• New operating system with totally 
different syscall interface
– One syscall per non-blocking “sub-operation”
– Kernel doesn’t need to keep state across 

multiple steps
– e.g., lookup_one_path_component()

• Microkernel: no system calls, just 
messages to servers, with non-blocking 
communication



28

User-Threads:
Implementation Choices

• Live with only partial support for user-level 
threads

• New operating system with totally 
different syscall interface
– One syscall per non-blocking “sub-operation”
– Kernel doesn’t need to keep state across 

multiple steps
– e.g., lookup_one_path_component()

• Microkernel: no system calls, just 
messages to servers, with non-blocking 
communication

But why bother with user-level threads now 
that kernels all support kernel threads?
Performance. High-performance servers now 
process packets in user space. Don’t want to 
have to trap to kernel to switch between 
handling different packets. (This is an area of 
ongoing systems research!)



29

Threads: Programming Difficulty

• Sharing of data structures in one address space
• Even on single CPU, thread model necessitates 

CPU concurrency
– Locks often needed for mutual exclusion on data 

structures
– May only have wanted to overlap I/O wait!

• Events usually occur one-at-a-time
– Can we do CPU sequentially, and overlap only wait for 

I/O?
– Yes: event-driven programming



30

Event-Driven Programming

• Foreshadowed by user-level threads 
implementation
– Organize software around event arrival

• Write software in state-machine style
– “When event X occurs, execute this function.”

• Library support for registering interest in events 
(e.g., data available to read())

• Desirable properties:
– Serial nature of events preserved
– Programmer sees only one event/function at a time


