
Exploit Defenses:
ASLR, W X, TaintCheck

Brad Karp
UCL Computer Science

CS 0133
4th December 2019

2

Host-Based Exploit Defenses

• Firewalls: defenses against exploits in-network
– Can see lots of traffic at one monitoring point
– Can filter traffic for many vulnerable hosts
– Limited information available: only packet fields,

payload contents
• Today: identifying and defending against

exploits on hosts
– Much more information: see effect of network request

on running process’s execution!
– Potentially more accurate
– Requires changes to host software
– Performance concern; don’t want to slow busy server

3

Outline

• W X page protections
– and limitations

• Address Space Layout Randomization
– and limitations

• TaintCheck
– and limitations

4

Goals for Host-Based Exploit Defenses

• Works on executables
– …and so for legacy code
– Source code often not available

• Prevents broadest possible range of exploits
• Low/no false positives, false negatives
• Minimal performance reduction

– Server operator won’t want to sacrifice performance
– Attacker may recognize server protected if

performance slows—and not send malicious request!

5

W X Page Protections

• Recall from OS: CPU implements page protection
in hardware
– For each 4K memory page, permission bits specified

in page table entry in kernel: read, write
• Central problem in many exploits:

– Code supplied by user in input data
– Execution transferred to user’s input data

• Idea: don’t let CPU execute instructions
stored in data pages
– i.e., each page should either be writable or

executable, but not both: W X
– Text pages: X, not W
– Data (stack, heap) pages: W, not X

6

W X Details

• Originally no X bit in Intel CPUs; just R and W,
all R pages implicitly X

• AMD and Intel introduced “NX” bit (no execute);
available on today’s processors (in PAE mode)
– Not a new idea; present in, e.g., DEC Alpha
– Used by Linux PaX and Windows XP SP2

• Linux PaX implements W X for x86 processors
without NX bit hardware
– Based on segment limit registers
– Halves address space available to each process
– Minor performance reduction

• W X breaks just-in-time (JIT) code generation
in legacy applications!

7

W X Hole: Return-to-libc Attacks

• Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
– e.g.,
system(“/bin/sh”);

• Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…
system()

8

W X Hole: Return-to-libc Attacks

• Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
– e.g.,
system(“/bin/sh”);

• Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…
system()

“/bin/sh”

9

W X Hole: Return-to-libc Attacks

• Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
– e.g.,
system(“/bin/sh”);

• Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…
system()

“/bin/sh”

10

W X Hole: Return-to-libc Attacks

• Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
– e.g.,
system(“/bin/sh”);

• Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…
system()

“/bin/sh”

11

W X Hole: Return-to-libc Attacks

• Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
– e.g.,
system(“/bin/sh”);

• Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…
system()

“/bin/sh”

0x61a4ac14

12

W X Hole: Return-to-libc Attacks

• Instead of putting
shellcode on stack,
can put args there,
overwrite return
address with pointer
to well known library
function
– e.g.,
system(“/bin/sh”);

• Return-to-libc attack

0x80707336

0x63441827 return addr

request

args

Increasing m
em

ory addresses
saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…
system()

“/bin/sh”

0x61a4ac14

0x80707308

13

Address Space Layout Randomization
(ASLR)

• Central observation: attacker must predict
addresses
– e.g., shellcode buffer address, libc function address,

string argument address
• Idea: randomize addresses in process

– With high probability, attacker will guess wrong
– Jump to unmapped memory: crash
– Jump to invalid instruction stream: crash

• Useful as efficient exploit detector
– Memory faults or illegal instructions suggest exploit

14

ASLR Implementation:
x86-32 PaX for Linux

• Linux process contains three memory regions:
– Executable: text, init data, uninit data
– Mapped: heap, dynamic (shared) libraries, thread

stacks, shared memory
– Stack: user stack

• ASLR adds random offset to each area when
process created
– Efficient; easily supported by virtual memory hardware
– 16, 16, 24 bits randomness, respectively

• Mapped offset limited to 16 bits
– bits 28-31 cannot be changed; would interfere with big

mmap()s
– bits 0-11 cannot be randomized; would make

mmap()ed pages not be page-aligned

15

Derandomization Attack on ASLR
[Shacham, Boneh et al.]

• 16 bits not that big; try to guess random
offset added to mapped area

• Once know random offset, can predict
addresses of shared libraries
– thus libc function addresses
– …so can mount return-to-libc attack

• Two phases:
– brute-force random offset to mapped area
– compute “derandomized” address of syscall(),

use in return-to-libc attack

16

Derandomization Attack Details

• Target: “classic” stack buffer overflow placed
in Apache web server

char buf[64];
…
strcpy(buf, input);

• Plan:
– Try to return to usleep(), guessing random offset

for mapped area each time
– If guess wrong, target process crashes, closes

connection immediately; parent forks new child
(with same random offset)

– If guess right, target process delays in usleep(),
then crashes and closes connection immediately

17

Derandomization Attack: Phase 1

• Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

• Each return address guess:
base + usleep() offset +

guess in [0, 64K]
• If guess wrong, crash
• If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses
saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…
usleep()

18

Derandomization Attack: Phase 1

• Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

• Each return address guess:
base + usleep() offset +

guess in [0, 64K]
• If guess wrong, crash
• If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses
saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…
usleep()

19

Derandomization Attack: Phase 1

• Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

• Each return address guess:
base + usleep() offset +

guess in [0, 64K]
• If guess wrong, crash
• If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses
saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…
usleep()

0xdeadbeef

20

Derandomization Attack: Phase 1

• Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

• Each return address guess:
base + usleep() offset +

guess in [0, 64K]
• If guess wrong, crash
• If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses
saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…
usleep()

0xdeadbeef

usleep()
guess

21

Derandomization Attack: Phase 1

• Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

• Each return address guess:
base + usleep() offset +

guess in [0, 64K]
• If guess wrong, crash
• If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses
saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…
usleep()

0xdeadbeef

usleep()
guess

0xdeadbeef

22

Derandomization Attack: Phase 1

• Know offset of usleep()
within libc, know base of
mapped area (w/o
randomization)

• Each return address guess:
base + usleep() offset +

guess in [0, 64K]
• If guess wrong, crash
• If guess right, usleep()

sees return address
0xdeadbeef, arg
16,843,009 usec (16 sec);
sleep, crash

0x80707336

0x63441827 return addr

buf

args

Increasing m
em

ory addresses
saved fp

caller’s
stack
frame

arg2

arg1

local vars

libc (text
segment)

…
usleep()

0xdeadbeef

usleep()
guess

0x01010101

0xdeadbeef

23

Derandomization Attack: Phase 2

• Now know random offset of mapped area
• Compute exact address of system() libc function:

address = base + system() offset in libc + guessed
random offset

• Perform return-to-libc attack using system(), as
in earlier example; “/bin/sh” in buf[] on stack

• Turns out caller’s frame contains pointer to buf[]!
• So overwrite stack past buf[] with several copies

of address of any ret instruction found in libc,
followed by address of system()
– Repeatedly pops stack until returns to system(), with

pointer to buf[] on top of stack (argument position)
– Details in paper, top of p. 8

24

Derandomization Attack:
Performance

• Many trials of phase 1 necessary to learn
random offset of mapped area on server

• For 1.8 GHz AMD Athlon server, attacked
by 2.4 GHz Pentium 4 client:
– 216 seconds on average to complete both

phases
– 200 bytes of traffic per probe; 12.8 MB data

from client worst-case, 6.4 MB data in
expectation

25

Can ASLR Be Made More Robust?

• 64-bit CPU architectures
– Probably 40 bits of random offset; much harder to

brute-force without attracting attention; so some help
with more recent hardware

• Re-randomize address space after every crash
(probe)
– For single randomization at startup, expected number

of probes: 2n-1

– For re-randomized n-bit random offset, expected
number of probes: 2n

– Only twice as many probes needed as in attack when
randomizing once at start!

– Not promising…

26

TaintCheck: Detecting Exploits by
Analyzing Server Execution

• Approach: instrument program to monitor
its own execution, detect when exploit
occurs

• Goals:
– Work on binaries (no source code required)
– Low false positives/false negatives
– Detect wide range of exploits (new varieties

all the time; point solutions unconvincing)
– Help humans understand how exploit worked,

after the fact; how did data flow from
malicious input to point of exploit?

27

TaintCheck:
Basic Execution Monitoring Idea

• Many exploits use data supplied by user
(or derived from data supplied by user) to
subvert control flow of program
– Need to modify jump, call instruction target

addresses, or function return addresses
• During execution, before any control

transfer instruction, validate target
address not derived from user-supplied
data
– If it is, exploit detected; raise alarm
– If it isn’t, continue execution normally

28

Tainting User Input
and Data Derived from It

• User is the source of exploits; don’t trust data
from him

• Mark all data from user (received from network,
or from input files) as tainted

• Propagate taint during execution
– Results of operations on tainted data should be

tainted
– Copies of tainted data should be tainted

• Clear taint when tainted data overwritten with
untainted data

• How do we get a precompiled program
executable to behave this way?

29

Valgrind: Modifying Executables at
Runtime

• Run executable under Valgrind system
• Give Valgrind instructions on how to instrument

executable
– literally, what instructions or function calls to search

for, and what instructions to add to them
• Valgrind’s processing loop:

– Fetch next basic block of program (dictated by IP/PC)
– Translate code into UCode, Valgrind’s instruction set
– Add instrumentation code to Valgrind UCode
– Translate code back to x86; cache for reuse
– Execute instrumented x86 basic block
– Repeat…

30

Adding Instrumentation:
Tracking Tainted Data

• After I/O system calls:
– If reading from socket, mark target buffer contents as

tainted
• After all memory load instructions:

– If source memory tainted, mark register tainted
– If source memory untainted, mark register untainted

• After all memory store instructions:
– If source register tainted, mark memory tainted
– If source register untainted, mark memory untainted

• After all arithmetic instructions:
– If any operand tainted, mark result tainted
– If no operands tainted, mark result untainted

31

Adding Instrumentation:
Detecting Invalid Uses of Tainted Data

• Before all control transfer instructions, add
code:
– If register or memory location holding target

function pointer is tainted, raise alarm
– Means derived from user input; should never

happen!
• Needed before each jump, call, ret

32

Tracking Taint: Shadow Memory

• For every byte of memory, keep shadow
memory that tracks taint status

• Simple interface:
– Is-Tainted(addr) -> {T | F}
– Taint(addr, len), Untaint(addr, len)

• Two modes of operation
– Fast: single bit for each byte of memory
– Detailed: 4-byte pointer to Taint data structure,

containing details of system call, stack, value; written
at time of tainting

– Detailed mode useful for analysis of exploits
• Implementation greatly affects performance

– Space vs. time tradeoff: packed vs. unpacked

33

Corner Case: Implicit Flows

• Suppose x tainted, then execute:
if (x == 0)

y = 0;
else

y = 1;

• TaintCheck doesn’t taint processor condition
flags
– Would often result in inappropriate propagation of

taint; false positives
• But x clearly influences value of y, and y could

later influence other values
• Result: false negatives are possible

– e.g., image compression bit-twiddling code?

34

Exploit Detection Coverage

• TaintCheck can also instrument function and system calls
• e.g., check printf()-like library calls for tainted format

string args
• Built system successfully detects many overwrite exploits

(return address, function pointer, format string, GOT
entry)

35

TaintCheck’s Performance:
Monitoring Apache

• Lots of extra instructions…
• Exec time not really right metric; throughput better metric

36

TaintCheck: Modes of Use (1)

• Identify worm payloads
– Can be configured to store trace of tainted

data flow from all inputs
– When exploit detected, can walk back to

identify input that led to exploit
– Could pass worm payloads to signature

generation system, like Autograph
• Much more accurate than port-scanner heuristic!

• Prevent exploit of server
– Halt execution upon exploit detection

37

TaintCheck: Modes of Use (2)

• Probably too slow for production servers
– 25X server farm size increase for Amazon?

• Could possibly deploy on a few servers:
sample traffic
– Would slow detection of new worm, though;

only sampling some inputs
– Adversary may possibly be able to detect

monitored servers by their slow response
time; avoid sending them exploit payload

