
The TAOS Authentication System: 
Reasoning Formally About Security

Brad Karp
UCL Computer Science

CS 0133
25th November 2019



2

Motivation: Building Correct 
Authentication Systems

• We’ve studied cryptographic primitives
• We’ve studied certificates, and how they’re used 

in SSL
– Trusted third party, CA, attests to binding between 

public key and principal’s name
– One party can authenticate other using certificate

• Certificates are more general tool, but can be 
hard to reason about

• How can we reason formally about whether 
collection of certificates truly authenticates some 
principal to complete some operation on some 
object?



3

Motivation:
Flexible Authentication Systems

• Suppose want to authenticate user on client 
workstation to file server
– User is principal
– User authorized on file server to perform certain 

operations on certain file objects
• Simple model:

– Use public-key cryptography
– Install user’s public key on file server
– User holds private key on client workstation while 

logged in
– User signs each RPC sent to file server using his 

private key



4

Motivation: Drawbacks of Simple 
Authentication Model

• Very slow (TAOS took 250 ms per RSA 
sig)

• Rigid:
– What if I ssh into second machine?
– 2nd box must sign RPCs to file server, too
– Does it send messages back to 1st box for 

signing? How would user know they’re 
authentic?

– What if user goes home, leaves simulation 
running for hours?



5

Motivation: SSL/TLS Rigid, Too

• Does SSL/TLS work here?
• Assume both sides (client and server) 

authenticate by presenting certificates
• Fast: symmetric-key ciphers for session data
• But workstation must hold private key for every 

connection
• What if I ssh into second machine?

– Want it to be able to use file server, too
– Would have to give second machine my private key!



6

Outline of TAOS Authentication (1)

• Give each machine an identity: 
public/private key pair

• User bkarp logs into machine X, signs 
certificate:
– “bkarp says X speaks for bkarp.”
– Reflects reality; X executes bkarp’s programs
– In paper, speaks for written as
– Y says X just means “Y signs statement X 

with KY” (note paper refers to public key when 
signing!)



7

Outline of TAOS Authentication (2)

• Now machine X can:
– Open SSL/TLS-like secure channel from self to 

server; file server knows it’s talking to X
– Present “bkarp says X speaks for bkarp” to 

file server; file server knows X can speak for 
user

– Send RPCs generated by bkarp’s programs to 
file servers

– All without machine X holding bkarp’s private 
key!



8

Authorizing 2nd Machine with TAOS

• Consider ssh by bkarp to 2nd machine
• Want Y to talk to file server for bkarp
• ssh on X signs “X says Y can speak for bkarp”
• Gives this certificate to Y when bkarp logs into Y
• Now Y presents proof outline to file server:

– I’m Y
– X says Y can speak for bkarp
– bkarp says X can speak for bkarp

• File server can check signatures and verify that 
RPCs authorized!



9

Why Can’t SSL/TLS Authorize 2nd

Machine?

• SSL/TLS for exactly two principals, tied to 
channels

• If X says something to Y, Y can’t prove 
anything to Z

• In fact, Y can’t verify anything after X 
closes its connection to Y

• SSL/TLS too rigid to support distributed 
systems with > 2 parties



10

TAOS’s Central Strengths

• Certificates are true independent of 
channels

• …so can be stored, passed to other parties
• …and used to prove transitive trust 

relationships



Axioms in the TAOS Logic
(2.1 in paper)

• speaks for:
– if (A speaks for B) and (A says S)

then (B says S)
• handoff axiom:

– if A says (B speaks for A)
then (B speaks for A)

• delegation axiom:
– if A says (B | A) speaks for (B for A))

then (B | A) speaks for (B for A))
11



Applying Handoff and Delegation

• Handoff: given
A says (B speaks for A) and B says S

then A says S
• Delegation: given

A says (B | A) speaks for (B for A) and 
B says A says S

then (B for A) says S

12



Applying Handoff and Delegation

• Handoff: given
A says (B speaks for A) and B says S

then A says S
• Delegation: given

A says (B | A) speaks for (B for A) and 
B says A says S

then (B for A) says S

13

Delegation more specific than handoff; records 
both principals, the trustor and trustee
Better for auditing…



14

Using Logic to Reason About 
Authentication

• Consider example in Section 2.2 of TAOS paper:
– User Bob logs into workstation WS
– Logic used to authenticate requests from Bob’s login 

session to a remote file server FS
• What principals are involved?

– Workstation firmware, OS, Bob, Channel
• Keep track of who knows:

– Private keys
– Signed certificates
– Channel keys



15

State Before Bob Logs In

• Workstation firmware knows Kvax4
• User knows Kbob’s private “half”
• File server has Kbob’s public “half” in an 

ACL



16

Workstation Boot Time: Generating Kws

• At boot, workstation firmware generates fresh 
public/private key, Kws

• Why not just use Kvax4 directly?
– Don’t want it to be stolen
– Don’t want statements to survive reboot (i.e., 

certificates generated for login sessions)
• Firmware signs:

“Kvax4 says (Kws speaks for Kvax4)”
• Kvax4 never used again (until reboot)
• Why bother preserving Kvax4’s identity?

– Why not just use Kws as workstation’s true identity?
– Want workstation’s identity to survive reboots



17

Boot Time: Generating Kws (2)

• Why bother with roles (“Kvax4 as OS”)?
– User might not trust some versions of OS, or some 

OS
– Want to allow OS type/version to be visible in ACLs
– Assuming a role amounts to reducing access rights

• Now vax4’s authentication agent knows:
Kws (but forgets Kvax4)
(Kvax4 as OS) says (Kws speaks for (Kvax4 as OS))

• Why does vax4 need an identity at all?
– So Bob can delegate to it!



18

Login: Delegation of Authority to 
Workstation by User

• Want ws to be able to act for Bob
• Bob signs with his private key, Kbob:

Kbob says ((Kws | Kbob) speaks for (Kws for Kbob))
• Private half of Kbob not used again until next 

login!
• Why not “Kbob says (Kws speaks for Kbob)”?

– If Kws signs something, on whose behalf was it?
– So statements by Kws ambiguous, and perhaps 

usable out of context



19

Delegation at Login (2)

• What does (A | B) mean?
– That A is doing the signing
– That A is claiming (no proof yet) that A is speaking 

for B
– Really means that A says in its signed statement that 

it’s speaking for B
• What does (A for B) mean?

– Logical conclusion that A allowed to speak for B
– i.e., (A | B) plus delegation, like one on previous slide 

(see delegation axiom on p. 4 of paper)
– By default, interpreted as B for purposes of ACLs
– But for those who care, preserves who actually signed

(A)



20

Delegation at Login (3)

• After delegation by Bob, vax4’s 
authentication agent knows:
Kws private half
(Kvax4 as OS) says (Kws speaks for (Kvax4 as OS))
Kbob says ((Kws | Kbob) speaks for (Kws for Kbob))



21

TAOS Channels

• TAOS uses symmetric-key ciphers to encrypt channels 
between hosts

• Channels named by their symmetric key
– Name has global meaning

• Cbob doesn’t imply anything about Bob
– Only a mnemonic used by authors to indicate intent that Cbob

carries messages from Bob
– System must establish proof that this is case

• File server knows:
– Cbob says RQ (where RQ a file server request)
– i.e., “received request from someone who knows key Cbob”

• But who knows key Cbob?
– Kws?
– Kws on behalf of Bob?
– Kws on behalf of someone else?



22

Proving Authenticity:
Channel Certificates

• ws signs channel certificate when channel 
between ws and file server first created:
(Kws | Kbob) says (Cbob speaks for (Kws for Kbob))

• Goal: link RQ encrypted with Cbob to Bob
• Why not just have Kbob sign:

– “Cbob speaks for Kbob”
– This is what SSL/TLS client-side certificates do
– But in TAOS, authentication agent doesn’t hold 

Kbob’s private half—and that’s a good thing…



23

Channel Certificates (2):

• Why not have Kws sign:
– “Cbob speaks for Kws”
– Along with pre-signed “Kws speaks for Kbob”
– Cbob doesn’t speak for Kws in general! Only Kbob.

• Channel certificate is in fact nicely restricted:
– States what we mean, and no more
– vax4 says Cbob speaks for (vax4 speaking for Bob)

• But vax4 could sign this statement without Bob’s 
agreement!

• So file server needs further evidence:
– Is vax4 allowed to speak for Bob?



24

Using Logic to Prove Authenticity

• Suppose ws sends all certificates to file 
server:
(Kvax4 as OS) says (Kws speaks for (Kvax4 as OS))
Kbob says ((Kws | Kbob) speaks for (Kws for Kbob))
(Kws | Kbob) says (Cbob speaks for (Kws for Kbob))

• Now file server can reason about meaning 
of Cbob says RQ



25

Using Logic to Prove Authenticity (2)

• File server can take
Kbob says ((Kws | Kbob) speaks for (Kws for Kbob))

• and deduce, using delegation axiom:
(Kws | Kbob) speaks for (Kws for Kbob)

• Informally, delegation axiom just means:
– If Bob signs certificate allowing Kws to speak for Bob, 

then Kws is allowed to speak for Bob
• Really, delegation certificate means:

– If Kws says it’s speaking for Bob, believe it.
– This is different than “Kws speaks for Kbob”!



26

Using Logic to Prove Authenticity (3)

• Now, combine:
(Kws | Kbob) speaks for (Kws for Kbob)
(Kws | Kbob) says (Cbob speaks for (Kws for Kbob))

• And thus derive:
(Kws for Kbob) says (Cbob speaks for (Kws for Kbob))

• In other words:
– Kws really does speak for Kbob; it’s not just claiming to 

do so
• So we can conclude that Cbob speaks for Kws

speaking for Kbob
• And thus:

(Kws for Kbob) says RQ



TAOS: Summary

• Certificates allow flexible authentication
– Can survive longer than a channel
– Allow delegation of authority
– Can be combined using formal logic

• Central ideas:
– says and speaks for
– handoff, delegation axioms
– useful tools for reasoning formally about 

authentication in any distributed system!
27


