The TAOS Authentication System:
Reasoning Formally About Security

Brad Karp
UCL Computer Science

A

I

CS 0133
25t November 2019



Motivation: Building Correct
Authentication Systems

We've studied cryptographic primitives
We've studied certificates, and how they're used

In SSL

— Trusted third party, CA, attests to binding between
public key and principal’s name

— One party can authenticate other using certificate

Certificates are more general tool, but can be
hard to reason about

How can we reason formally about whether
collection of certificates truly authenticates some
principal to complete some operation on some
object?



Motivation:
Flexible Authentication Systems

e Suppose want to authenticate user on client
workstation to file server
— User is principal
— User authorized on file server to perform certain
operations on certain file objects
e Simple model:
— Use public-key cryptography
— Install user’s public key on file server

— User holds private key on client workstation while
logged in

— User signs each RPC sent to file server using his
private key



Motivation: Drawbacks of Simple
Authentication Model

e Very slow (TAOS took 250 ms per RSA
Sig)

e Rigid:
— What if I ssh into second machine?
— 2" box must sign RPCs to file server, too

— Does it send messages back to 15t box for
signing? How would user know they're
authentic?

— What if user goes home, leaves simulation
running for hours?



Motivation: SSL/TLS Rigid, Too

Does SSL/TLS work here?

Assume both sides (client and server)
authenticate by presenting certificates

Fast: symmetric-key ciphers for session data

But workstation must hold private key for every
connection
What if I ssh into second machine?

— Want it to be able to use file server, too
— Would have to give second machine my private key!



Outline of TAOS Authentication (1)

e Give each machine an identity:
public/private key pair

e User bkarp logs into machine X, signs
certificate:
— “bkarp says X speaks for bkarp.”
— Reflects reality; X executes bkarp’s programs
— In paper, speaks for written as @

—Y says X just means Y signs statement X
with K" (note paper refers to public key when

signing!) ]




Outline of TAOS Authentication (2)

e Now machine X can:

— Open SSL/TLS-like secure channel from self to
server; file server knows it's talking to X

— Present “bkarp says X speaks for bkarp” to
file server; file server knows X can speak for
user

— Send RPCs generated by bkarp’s programs to
file servers

— All without machine X holding bkarp’s private
key!



Authorizing 2" Machine with TAOS

Consider ssh by bkarp to 2" machine

Want Y to talk to file server for bkarp

ssh on X signs "X says Y can speak for bkarp”
Gives this certificate to Y when bkarp logs into Y

Now Y presents proof outline to file server:
- I'mY

— X says Y can speak for bkarp

— bkarp says X can speak for bkarp

File server can check signatures and verify that
RPCs authorized!



Why Can’t SSL/TLS Authorize 2
Machine?

o SSL/TLS for exactly two principals, tied to
channels

o If X says somethingto Y, Y can't prove
anything to Z

e In fact, Y can't verify anything after X
closes its connection to Y

e SSL/TLS too rigid to support distributed
systems with > 2 parties



TAOS’s Central Strengths

o Certificates are true independent of
channels

e ...SO can be stored, passed to other parties

e ...and used to prove transitive trust
relationships

10



Axioms in the TAOS Logic
(2.1 in paper)

o speaks for:

— if (A speaks for B) and (A says S)
then (B says S)

¢ handoff axiom:

— if A says (B speaks for A)
then (B speaks for A)

e delegation axiom:

—if A says (B | A) speaks for (B for A))
then (B | A) speaks for (B for A))

11



Applying Handoff and Delegation

e Handoff: given
A says (B speaks for A) and B says S
then A says S

e Delegation: given
A says (B | A) speaks for (B for A) and
B says A says S
then (B for A) says S

12



Applying Handoff and Delegation

e Handoff: given
A says (B speaks for A) and B says S
then A says S

e Delegation: given
A says (B | A) speaks for (B for A) and
B says A says S
then (B for A) says S

‘ Delegation more specific than handoff; records
both principals, the trustor and trustee

L Better for auditing...

\




Using Logic to Reason About
Authentication

e Consider example in Section 2.2 of TAOS paper:

— User Bob logs into workstation WS

— Logic used to authenticate requests from Bob’s login
session to a remote file server FS

e What principals are involved?
— Workstation firmware, OS, Bob, Channel

e Keep track of who knows:
— Private keys
— Signed certificates
— Channel keys

14



State Before Bob Logs In

e Workstation firmware knows K,.,4
e User knows K,.,'s private “half”

e File server has K,,,'s public "half” in an
ACL

15



Workstation Boot Time: Generating K.

e At boot, workstation firmware generates fresh
public/private key, K,

e Why not just use K, ,,4 directly?
— Don't want it to be stolen

— Don't want statements to survive reboot (i.e.,
certificates generated for login sessions)

e Firmware signs:
"Kiaxa Says (K,s speaks for K,,,4)"

e K,aa Never used again (until reboot)

e Why bother preserving K,.,.’s identity?
— Why not just use K, as workstation’s true identity?

— Want workstation’s identity to survive reboots y



Boot Time: Generating K. (2)

e Why bother with roles (K., as OS")?

— User might not trust some versions of OS, or some
OS

— Want to allow OS type/version to be visible in ACLs
— Assuming a role amounts to reducing access rights

e Now vax4’'s authentication agent knows:

Kws (but forgets K, .,4)

(K,axa @S OS) says (K, speaks for (K,.,4 as OS))
e Why does vax4 need an identity at all?

— S0 Bob can delegate to it!

17



Login: Delegation of Authority to
Workstation by User

e Want ws to be able to act for Bob

e Bob signs with his private key, Kyqp:
Koob SAYS ((Kws | Koob) speaks for (K,,s for Kyqp))

e Private half of K, not used again until next
login!

e Why not “K,, says (K, speaks for K,.,)"?
— If K, signs something, on whose behalf was it?

— So statements by K. ambiguous, and perhaps
usable out of context

18



Delegation at Login (2)

e What does (A | B) mean?
— That A is doing the signing

— That A is claiming (no proof yet) that A is speaking
for B

— Really means that A says in its signed statement that
it's speaking for B
e What does (A for B) mean?
— Logical conclusion that A allowed to speak for B

— i.e., (A | B) plus delegation, like one on previous slide
(see delegation axiom on p. 4 of paper)

— By default, interpreted as B for purposes of ACLs

— But for those who care, preserves who actually signed
(A) 19



Delegation at Login (3)

o After delegation by Bob, vax4's

authentication agent knows:
Kws private half

(K a4 @S OS) says (K, speaks for (K4 as 0OS))
Koob S@YS ((Kws | Koon) speaks for (Kis for Kygp))

20



TAOS Channels

TAOS uses symmetric-key ciphers to encrypt channels
between hosts

Channels named by their symmetric key
— Name has global meaning

Chop doesn’t imply anything about Bob

— Only a mnemonic used by authors to indicate intent that C,p,
carries messages from Bob

— System must establish proof that this is case

File server knows:

— Cyop says RQ (where RQ a file server request)

— i.e., “received request from someone who knows key C,.,"
But who knows key Cyyp?

— Kye?

— K, On behalf of Bob?

— K, 0N behalf of someone else?

21



Proving Authenticity:
Channel Certificates

e WS signs channel certificate when channel
between ws and file server first created:

(Kus | Kbob) says (Cyon speaks for (K5 for Kyqp))
e Goal: link RQ encrypted with C,,, to Bob
e \Why not just have K, sign:

— "Chop Speaks for Ky.p"

— This is what SSL/TLS client-side certificates do

— But in TAQS, authentication agent doesn’t hold
Khop S private half—and that’s a good thing...

22



Channel Certificates (2):

Why not have K, sign:

— "Cpop Speaks for K"

— Along with pre-signed “K,,. speaks for K,.,"

— Cpop doesn’t speak for K, in general! Only K.
Channel certificate is in fact nicely restricted:

— States what we mean, and no more

— vax4 says C,,, speaks for (vax4 speaking for Bob)

But vax4 could sign this statement without Bob’s
agreement!

So file server needs further evidence:
— Is vax4 allowed to speak for Bob?

23



Using Logic to Prove Authenticity

e Suppose ws sends all certificates to file
Server.
(K,axa @S OS) says (K, speaks for (K,.,4+ as OS))
Kiob SAYS ((Kus | Keop) Speaks for (K, for K,.p))
(Kws | Koop) Says (Cyop speaks for (K, for Ky.p))

e Now file server can reason about meaning
of C,,,, says RQ

24



Using Logic to Prove Authenticity (2)

File server can take
Kbob SAYS ((Kys | Kbob) speaks for (K, for Ky.p))

and deduce, using delegation axiom:
(Kws | Kbob) speaks for (K, for Kyp)

Informally, delegation axiom just means:

— If Bob signs certificate allowing K, to speak for Bob,
then K¢ is allowed to speak for Bob

Really, delegation certificate means:
— If K, says it's speaking for Bob, believe it.
— This is different than “K,c speaks for Ky,"!

25



Using Logic to Prove Authenticity (3)

Now, combine:
(Kws | Kpopn) speaks for (K, for Ky,qp)
(Kws | Kbob) Says (Cbob speaks fOI" (Kws fOI" Kbob))

And thus derive:
(Kys for Kyop) says (Cy., speaks for (K, for K,.p))

In other words:

— K, really does speak for K,; it's not just claiming to
do so

So we can conclude that C,., speaks for K.
speaking for Ky,

And thus:

(K,s for K,.) says RQ

26



TAOS: Summary

e Certificates allow flexible authentication
— Can survive longer than a channel
— Allow delegation of authority
— Can be combined using formal logic

e Central ideas:
— says and speaks for
— handoff, delegation axioms

— useful tools for reasoning formally about
authentication in any distributed system!

27



