Managing Heavy Network Load:
Eliminating Receive Livelock

Brad Karp
UCL Computer Science

A

I

CS 0133
15t November 2019

Engineering for Performance

e Much of the work in distributed systems
concerns designing for
— Consistency
— Availability
— Performance
e Performance is multi-faceted

— Not just determined by design of distributed
system itself (algorithms, protocols)

— Low-level hardware, OS behavior play major role
e Achieving high performance requires deep

understanding of all layers: hardware, OS,
all the way through algorithms and protocols!

2

Engineering for Performance

g Systems Thinking: the ability to reason about
complex interactions among many layers, to find
problems (and (re)design to avoid them)

JIILYy

— Performance

e Performance is multi-faceted

— Not just determined by design of distributed
system itself (algorithms, protocols)

— Low-level hardware, OS behavior play major role
e Achieving high performance requires deep

understanding of all layers: hardware, OS,
all the way through algorithms and protocols!

3

Heavy Load Happens

e Servers have limited CPU, network link
capacity, memory, disk bandwidth

e Demand often approaches or exceeds a
server’s capacity, e.g.,
— Flash crowds at web server
— Busy NFS server as client population grows
— IP router or firewall carrying flash crowd traffic
(or denial of service attack traffic!)

e But software design can limit performance
at loads lighter than where these hardware
limits kick in...

Example:
IP Packet Forwarding Performance

e Hardware: commodity workstation
(DECstation 3000/300; PC-like), two 10
Mbps Ethernet interfaces

e Software: Digital UNIX 3.2 OS, screend
firewall application in userspace

e Workload: forward IP packets from one
Ethernet to another (UDP packets, 4 bytes
of payload each)

e Packet-generating host has faster CPU
than forwarder

Example:
IP Packet Forwarding Performance

4 Question: How well does whole system scale as A

load increases?
Experiment: vary input packet rate to forwarder;
observe output packet rate

firewall application in userspace

e Workload: forward IP packets from one

Ethernet to another (UDP packets, 4 bytes
of payload each)

e Packet-generating host has faster CPU
than forwarder

J

Example:
IP Packet Forwarding Performance

5000 | |
o
Q
24000 - o S —
;%’ 3000 — .. ¢ .O. Without screend]
= () o '
o)
S 2000 [Culu ® . -
[
¥ L M
‘é u [0 With screend o
£ 1000 - q O —
o 7 .
0 | | e u U o R
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

e Peak output rate w/o firewall: ~4700 pkt/s

e Beyond ~4700 pkt/s, output rate
decreases with further increasing load!

Example:
IP Packet Forwarding Performance

5000 |

o

)
24000 - K S —
%’ 3000 — .. ¢ .O. Without screend]
= o o '
o)
S 2000 [Culu ® . =
=8 M ®
‘é u [0 With screend o
£ 1000 |- q O —
o M .

0 | | e u U o R

0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

: Suppose hardware’s capacity is 4700 pkt/s.

What would ideal system behavior be beyond that
L iInput rate?

Example:
IP Packet Forwarding Performance

5000 | | | |
~ [
Q
24000 - oo S -
%’ 3000 — .. ¢ .O. Without screend]
= () o '
o)
S 2000 [Culu ® . =
=8 M ®
‘é u [0 With screend o
£ 1000 |- q O —
o M .
0 | | e u U o R
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

: Suppose hardware’s capacity is 4700 pkt/s.

What would ideal system behavior be beyond that
L iInput rate?

Background:
I/0 Device Hardware

e I/O devices need to notify CPU of events
— Packet arrival at network interface
— Disk read complete
— Key pressed on keyboard

e Two main ways CPU can learn of events:

— Polling: CPU “asks” hardware device if any events
have occurred (synchronous)

— Interrupt: hardware device sends a sighal to CPU
saying “events have completed” (asynchronous)

e Key concerns: event latency and CPU load

10

Polling

e Requires programmed or memory-mapped
I/O (relatively slow; over I/O bus)

e CPU "blindly” polls device explicitly in code
— to guarantee low latency, must poll very often
— high CPU overhead to poll very often

e For rare I/O events, CPU overhead of polling
unattractive

e Disk I/Os complete only 100s of times ?er
second; in 1980s-90s, only hundreds o
network packets arrived per second

e OSes in that era eschewed polling

11

Interrupts

I/O devices have dedicated wire(s) that they can
use to signal interrupt(s) to CPU

On interrupt, if interrupt priority level (IPL) > CPU

priority level:

— CPU saves state of currently running program
— jumps to interrupt service routine (ISR) in kernel
— invokes device driver, which asks device for events

— returns to previously running

CPU priority level: kernel-set
specifying which interrupts al
postponed by CPU)

Drogram
machine state

owed (others

On modern x86_64, interrupt latency of ~3 us

from device interrupt to start

of ISR

12

Interrupts

a Interrupts well-suited to rare I/0 events: lower A

latency than rarely polling, lower CPU cost than
constantly polling

Interrupts asynchronous—they preempt other
_Ssystem activity)
— invokes device driver, which asks device for events

— returns to previously running program

e CPU priority level: kernel-set machine state
specifying which interrupts allowed (others
postponed by CPU)

e On modern x86_64, interrupt latency of ~3 us
from device interrupt to start of ISR

13

Interrupts and Network I/0

Disk I/O requests come from OS itself;
completion interrupts inherently rate-
controlled

Network packets come from other hosts; no
“local” rate control for received packet
Interrupts

Remember: interrupts take priority over all
other system processing (over other kernel
execution, user-space applications)

What will happen when received packet rate
extremely high?
— Answer depends on detailed software structure...

14

Interrupts and Network I/0

g Receive Livelock: h
When event rate (pkt arrival rate) so high, system
spends all its time servicing interrupts, gets no
other work done!

_ J

Interrupts

e Remember: interrupts take priority over all
other system processing (over other kernel
execution, user-space applications)

e What will happen when received packet rate
extremely high?

— Answer depends on detailed software structure...

15

Design Goals for
Network I/0 System

e Goals:
— Low latency for responding to I/O events
— Low jitter (variance in latency)
— Fairness: resources allocated evenly among tasks

— High throughput for I/O (e.g., achievable packet
receive rate, transmit rate)

e What are the tasks for a network server?
— Packet reception
— Packet transmission
— Protocol processing (often in kernel)
— Other I/O processing
— Application processing

16

Background: OS Architecture for
Interrupt-Driven Networking

e Packet arrives
e Network card interrupts at “high” IPL

o ISR looks at Ethernet header, enqueues
packet for further processing, returns

e "Low"” IPL software interrupt dequeues
packets from queue, does IP/UDP/TCP
processing, enqueues data for dst process

e Process reads data with read() system call

e Queues denote scheduling and priority
level boundaries

17

Background: OS Architecture for
Interrupt-Driven Networking

-

g

Queues are scheduling and priority level
boundaries

Minimizing work in ISR reduces service latency
for other device I/O interrupts

J

e "Low"” IPL software interrupt dequeues
packets from queue, does IP/UDP/TCP
processing, enqueues data for dst process

e Process reads data with read() system call

e Queues denote scheduling and priority
level boundaries

18

increasing priority level

Interrupt-Driven Networking,
UNIX Style

recelve ISR
C\’[transmit complete ISR

le} = T+

input queue utput queue

socket
IP forwarding/reception buffer
socket (" software interrupt
buffer

kernel

19

Interrupt-Driven Networking,
UNIX Style

recelve ISR
C\’[transmit complete ISR
input queue IB ; output queue

socket
| IP forwarding/reception buffer
socket software interrupt
buffer —

kernel

“yeasing priority level

Design prioritizes packet reception above all else

Original motivation: small buffers on network

interfaces (no longer a concern)
. y,

Interrupt-Driven Networking,
UNIX Style

recelve ISR
C\’[transmit complete ISR

C_ml} < T

input queue utput queue

socket
IP forwarding/reception buffer
socket (" software interrupt
buffer —

kernel

“_increasing priority level

How will this system behave as packet receive rate

increases—what will output packet rate do?
. J

Receive Livelock Pathologies

e As input rate increases beyond maximum
loss-free receive rate, output rate decreases

e System wastes CPU preparing arriving
packets for queue, all of which dropped

e For input burst of packets, first packet not
delivered to user level until whole burst put
onh queue (e.qg., leaves NFS server disk idle!)

e In systems where transmit lower-priority than
receive, transmit starves

22

Livelock Avoidance Technique 1:
Minimize Receive Interrupts

e Goal: limit the receive interrupt rate

e Receive ISR:

— sets flag indicating this network interface has
received one or more packets

— schedules kernel thread that polls network
interfaces for received packets

— does not re-enable receive interrupts
e That's it! Set flag, schedule kernel thread,

and return, leaving receive interrupts
disabled.

23

Livelock Avoidance Technique 2:
Kernel Polling Thread

e When scheduled, checks all network
interfaces’ “packets received” flags

e For such interfaces:

— process packet all the way through kernel
protocol stack (IP/forwarding/UDP/TCP), ending
with interface output queue or socket buffer to
application

— maximum quota on packets fproce_ssed for same
interface on one invocation for fairness

— round-robins among interfaces and between
transmit and receive

— Re-enable interface’s receive interrupts only when
no pending packets at that interface

24

Livelock Avoidance Technique 2:
Kernel Polling Thread

-

_

Under overload, where do packets go?

Dropped by network interface card when buffering
exhausted (either in card, or in host RAM), at no
CPU cost!

with interface output queue or socket buffer to
application

— maximum quota on packets fproce_ssed for same
interface on one invocation for fairness

— round-robins among interfaces and between
transmit and receive

— Re-enable interface’s receive interrupts only when
no pending packets at that interface

25

Performance Evaluation:

Techniques 1 and 2

6000 | | | |
g 5000 — Lo OO0 MOm @00 o M _
E Polling (no quota) :rj ?
£ 4000 H Polling (quota = 5) (j 5 g —
g O No polling a O on % ®
< 3000 @ Unmodified L™ O D —
S T o0 @
Q L? @
2 2000 - 3 o" 8e0 o p _
= @
5 1000 — —

0 I I I I
0 2000 4000 6000 8000 10000

Input packet rate (pkts/sec)

e No screend firewall

e Without quotas for input processing, big

trouble! (Why?)

12000

26

What about screend?

B = i e = N wie I e i et T i = Tt

3000 ,
3 2500 —
€ 2000 s e © —
8 " Polling w/feedback
% 1500 — O I%. » [Polling, no feedback —
e B0y ® Unmodified
21000 - ™ -
= ® u
£ so0b . U —
@) [M e M o
° o o nd JFO
0 | | | sl [0y
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

e User-level application still cannot run under
heavy receive load!

e Technique 3: disable receive interrupts when
queue to user application fills 27

Receive Livelock: Summary

e Scheduling vital to performance of a busy
server
— may be implicit (e.q., interrupts), not explicit
(e.g., OS scheduler)

e Understanding cross-layer behavior vital to
finding performance limitations and
designing for high performance

e General lessons:
— Don't discard data after doing work on it
— Poll while busy, interrupt while lightly loaded

28

