

A $3^{\text {rd }}$ degree Bézier curve

- $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}=4$ original control points

Recursive interpolation

- From ($p_{0}, p_{1}, p_{2}, p_{3}$), we deduce 2 sets of control points: $\left(\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right)$ and $\left(\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}\right.$, r_{3})

Colinear

- Colinear checks if the 4 points $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$ are aligned
- Of course, you don't get the alignment easily (numerical problems, degree of accuracy, etc...)
- We need to have an approximation
- Return true if the 4 points are approximately on a straight line

Algorithm

void bezier(Point p[])

\{
Point q[], r[];
if(colinear(p)) \{ draw_line(p0,p3)
\} else \{
/* split p into q and r */ split $(\mathrm{p}, \mathrm{q}, \mathrm{r})$; bezier(q); bezier(r);
\}
\}

Split

- We need to compute R and Q from P
- Where
- $\mathrm{q}_{0}=\mathrm{f}(\mathrm{r}, \mathrm{r}, \mathrm{r}), \mathrm{q}_{1}=\mathrm{f}(\mathrm{r}, \mathrm{r}, \mathrm{t}), \mathrm{q}_{2}=\mathrm{f}(\mathrm{r}, \mathrm{t}, \mathrm{t}), \mathrm{q}_{3}=\mathrm{f}(\mathrm{t}, \mathrm{t}, \mathrm{t})$
- $r_{0}=f(t, t, t), r_{1}=f(t, t, s), r_{2}=f(t, s, s), r_{3}=f(s, s, s)$
- You can split how ever you like, but it's convenient to split in $2 \ldots$ using $\mathrm{t}=1 / 2$

