
Requirements Reflection:
Requirements as Runtime Entities ∗

Nelly Bencomo,Jon Whittle,Pete Sawyer
Computing Department
Lancaster University, UK

{nelly,whittle,sawyer}@comp.lancs.ac.uk

Anthony Finkelstein,Emmanuel Letier
Department of Computer Science

University College London, UK
{a.finkelstein,e.letier}@cs.ucl.ac.uk

ABSTRACT
Computational reflection is a well-established technique that
gives a program the ability to dynamically observe and pos-
sibly modify its behaviour. To date, however, reflection is
mainly applied either to the software architecture or its im-
plementation. We know of no approach that fully supports
requirements reflection- that is, making requirements avail-
able as runtime objects. Although there is a body of litera-
ture on requirements monitoring, such work typically gener-
ates runtime artefacts from requirements and so the require-
ments themselves are not directly accessible at runtime. In
this paper, we define requirements reflection and a set of
research challenges. Requirements reflection is important
because software systems of the future will be self-managing
and will need to adapt continuously to changing environ-
mental conditions. We argue requirements reflection can
support such self-adaptive systems by making requirements
first-class runtime entities, thus endowing software systems
with the ability to reason about, understand, explain and
modify requirements at runtime.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements Specifica-
tions—Languages, Methodologies

General Terms
Design

Keywords
Requirements, reflection, runtime, self-adaptive systems

1. MOTIVATION
The development of software-intensive systems is driven

by their requirements. Traditional requirements engineer-
ing (RE) methods focus on resolving ambiguities in require-
ments and advocate specifying requirements in sufficient de-
tail so that the implementation can be checked against them

∗Work partially funded by the EUFP7 STREP DiVA and
EPSRC MaTREx projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

for conformance. In an ideal world, this way of thinking can
be very effective. Requirements can be specified clearly, up-
dated as necessary, and evolutions of the software design can
be made with the requirements in mind.

Increasingly, however, it is not sufficient to fix require-
ments statically because they will change at runtime as the
operating environment changes. Furthermore, as software
systems become more pervasive, there is growing uncertainty
about the environment and so requirements changes cannot
be predicted at design-time [25, 4]. It is considerations such
as these that have led to the development of self-adaptive
systems (SASs) [3], which have the ability to dynamically
and autonomously reconfigure their behavior to respond to
changing external conditions.

Consider a scenario involving a robot vacuum cleaner for
domestic apartments. The vacuum cleaner has goals clean
apartment, avoid tripping hazard and minimize energy costs.
Further, it has the domain assumption energy is cheapest at
night. To satisfy the avoid tripping hazard goal, a require-
ment is derived that it should stop operating as soon as any
human activity is detected. Night operation satisfies the
minimize energy costs goal. Thus all the goals are satisfi-
able, with no trade-offs necessary. In operation, the sound
of the cleaner awakens a light sleeper. In the dark, they
trip over the now stopped and therefore silent cleaner. Key
features of this scenario are:
• Environmental uncertainty, in terms of resident behaviour,

led to the accident;

• Disturbance of light sleepers is an emergent property;

• Tripping hazard avoidance and energy efficiency might not
be so compatible after all. A switch to a day-time cleaning
strategy would imply trading the energy efficiency goal off
against tripping hazard avoidance;

• The night-time tripping hazard could be mitigated by de-
riving a new requirement that on detecting movement the
cleaner stops moving but keeps the vacuum motor oper-
ating so that the sound alerts residents to its presence.

With the current state-of-the-art, the vacuum cleaner could
adapt its behaviour. However any adaptation would either
have to be pre-defined at design time, or would have to be a
reflexive response to some monitored parameter(s), perhaps
using machine-learning algorithm. An effective pre-defined
response would be dependent on the requirements analyst
anticipating and enumerating all environmental states and
the corresponding behaviour required of the vacuum cleaner.
In the case of a reflexive response, the relationship between
the adaptation and the goals would be at best implicit, mak-

199

ing verification of goal satisfaction hard or impossible.
The key argument of this paper is that current software

engineering (SE) methods do not support well the kind of
dynamic appraisal of requirements needed by an SAS and
illustrated by the scenario. In most software, information
about the definition and structure of requirements is lost as
requirements are refined into an implementation. Even in
cases where requirements monitoring is explicitly included,
high-level system requirements must be manually refined
into low-level runtime artefacts during the design process so
that they can be monitored. The vacuum cleaner’s require-
ments, for example, could be monitored by instrumenting
the code to sense characteristics of the environment, such as
energy consumed and collision events.

Usually, however, the link between low-level sensors and
the high-level goals that motivated them is not explicitly
recorded in the running system. This makes it very difficult
to re-assess or revise requirements at runtime when the en-
vironment changes. The only information available to the
system is low-level information and so reasoning can only be
carried out at this level.

This paper proposes a new paradigm for SE, called re-
quirements reflection, in which requirements are reified as
runtime entities. This would allow systems to dynamically
reason about themselves at the level of the requirements - in
much the same way that architectural reflection [5, 2] cur-
rently allows runtime reasoning at the level of the software
architecture. We believe that requirements reflection will
support the development and management of SASs because
it will raise the level of discourse at which a software system
is able to reflect upon itself.

2. STATE-OF-THE-ART
SASs are challenging to develop because they operate un-

der uncertain conditions. Researchers in many fields are
responding to this challenge [3]. The networking commu-
nity, for example, has developed networked systems capable
of autonomous changes in topology, load, tasks, and phys-
ical and logical network characteristics [7]. The intelligent
agent, machine learning and planning communities have also
had a long interest in autonomous and adaptive systems.

SE advances for SASs have resulted in novel software ar-
chitectures and programming paradigms [3]. Novel software
architectures for SASs include mechanisms for swapping out
components and/or connectors at runtime (c.f., [14]). Sim-
ilar techniques have been investigated in the middleware
community - in particular, reflection has been used to con-
struct middleware platforms [18, 13] that allow systems to
introspect about their structure at runtime, so informing
their automatic reconfiguration. Well-established work on
reflective middleware [2, 5] uses architecture-based models of
component compositions to enable reconfiguration. Reflec-
tive architectures are now well established but only support
reflection over architecture not requirements.

Important early research in requirements monitoring and
diagnosis have laid the foundations for requirements reflec-
tion. Fickas and Feather [10] provide a framework for sys-
tems to monitor their executions and modify themselves at
runtime to better satisfy stakeholders’ goals. Similar ap-
proaches are proposed in [8, 16, 11]. Several frameworks
have been developed for the generation of software monitors
from requirements models [8, 21, 19, 6, 24]. Specifically, [24]
goes a step further allowing not just monitoring but also

diagnosis of software requirements. However, it is our un-
derstanding the solution do not offer explicit representation
of requirements and only monitors system failures and needs
extensions to handle failures [24].

In the research reported above, information about the def-
inition and structure of requirements is lost as requirements
are refined into implementations. Current approaches do not
reify requirements as runtime objects. Rather, the require-
ments are used to generate other runtime artefacts, such as
requirements monitors. There is therefore only a loose con-
nection between the requirements and the resulting code.
This drawback leads to fundamental limitations in how the
system can converse about requirements since the system
does not have access to the original requirements, but only
derived artefacts that may be incomplete or at inappropriate
levels of abstraction.

3. PROPOSED APPROACH
In this section, we outline preliminary ideas on how to

achieve the requirements reflection vision. We present three
key challenges that we see are necessary to realize require-
ments reflection.

Challenge 1: Runtime representation of require-
ments. The first challenge is the runtime representation of
requirements in a form suitable for introspection and adap-
tation. Introspection implies the ability of a runtime entity
to reveal information about itself. Here, adaptation refers
to the ability of a program to modify entities discovered
through introspection.

RE is concerned with the identification of the goals to be
achieved by the system, the refinement of goals into specifi-
cations of services, and the assignment of responsibilities for
services among human, physical, and software components
forming the system [22]. Goals can be refined and assigned
in many different ways and a significant part of the RE pro-
cess consists of exploring the alternatives and selecting the
most preferable option by evaluating the impacts on the sys-
tem and its organizational context. Selecting among these
alternatives is critical to the success of a system, but, in a
SAS, an optimal selection is notoriously hard - and perhaps
impossible - to achieve before runtime due to inherent uncer-
tainties in the environment. Runtime re-assessment of these
choices is therefore crucial as a way to optimize (or satisfice)
the system goals in the current context during execution.

Requirements reflection depends on a runtime represen-
tation of system requirements (i.e. its runtime model [1])
that is rich enough to support the wide range of runtime
analyses outlined above concerning stakeholders’ goals, soft-
ware functional and non-functional requirements, alterna-
tive choices, domain assumptions, scenarios, risks, threats,
and conflicts. Such runtime representation will underpin the
way a system can reason and assess requirements during run-
time. To support such dynamic assessment of requirements,
language features found in goal-oriented requirements mod-
eling languages such as KAOS [22] and i* [26] hold particu-
lar promise. KAOS, for example, integrates the intentional,
structural, functional, and behavioral aspects of a system,
and has formal semantics permitting automated reasoning
over goals.

One way to achieve a runtime representation of require-
ments, therefore, is to base it on goal-based RE and, in par-
ticular, to provide language support for representing, navi-
gating and manipulating instances of a meta-model for goal

200

modeling (e.g., the KAOS meta-model [22]). The meta-
model could be provided as a set of built-in constructs to
a programming language, but need not be, and, could alter-
natively be provided in the form of (e.g.) a library. The key
point is that the meta-model provides a way to represent
and maintain relationships between requirements and code
that implements them. This representation must be not only
readily understandable by humans but also easily manipu-
lable by the system itself. This will allow programs to query
themselves to determine requirements-relevant information,
such as: What are the sub-goals of a goal? Which agents
are responsible for achieving the goal? What assumptions
are associated with a goal?

Figure 1: Goal and architecture synchronization.

Challenge 2: Synchronization between goals and
architecture. An important purpose of requirements re-
flection is to enable self-adaptive systems to reason over and
re-evaluate their requirements at runtime. Any re-assessments
to the requirements must, of course, be reflected in the run-
ning system and the crucial link to enable this to happen
is to synchronize the runtime representation of the require-
ments and the software architecture. We therefore see a
major challenge of requirements reflection to maintain this
synchronization as either the requirements are changed from
above or the architecture is changed from below.

Existing work on reflection offers a potential way to struc-
ture the runtime relationship between requirements and ar-
chitecture. As an example, reflective middleware infrastruc-
ture, as developed at Lancaster University [5], is organized
into two causally-connected layers - the base -layer, which
consists of the running architecture - and the meta-layer,
which consists of meta-objects, accessible through a meta-
object protocol (MOP), for dynamically manipulating the
running architecture. We propose an analogous strategy
for realizing requirements reflection: a base- layer consist-
ing of runtime requirements objects and a meta-layer allow-
ing dynamic manipulation of requirements objects (includ-
ing stakeholders’ goals, goal refinements, alternative choices,
domain assumptions, etc.). This way of structuring require-
ments reflection therefore leads to two strata - one for re-
quirements and one for architecture - each comprising a
causally-connected base and meta-layer. Inspired on the
traditional architecture meta-model (which offers operations
over components and connectors), we can define primitives
for the goal-based requirements meta-model that allows the
meta-level to modify the base-level for the case of the re-
quirements stratum - e.g., add req, delete req, replace req,
add goal, delete goal, replace goal, obtain agent from goal,

assign agent to goal (Figure 1).
The overarching research challenge of the proposed struc-

ture in Figure 1 is to coordinate the upper requirements
stratum and the lower architecture stratum. That is, there
needs to be a tight semantic integration between the strata
so that changes in the requirements are seamlessly effected
in the architecture (and vice versa). As a simple example, if
a goal is changed in the upper stratum, then the running sys-
tem may identify a set of components in the architecture to
replace. Put more simply, changes in the software architec-
ture should be monitored to ensure that the requirements are
not broken; changes to the requirements at runtime should
be reflected in the running system by dynamic generation of
changes to the software architecture.

Challenge 3: Dealing with Uncertainty. Represent-
ing requirements as runtime entities and synching these with
architectural meta-data provide the fundamental building
blocks to support dynamic re-assessment of requirements,
but a key additional challenge, and one which requirements
reflection is intended to help with, is to deal with the in-
herent uncertainties of self-adaptive systems. Uncertainties
arise because of the stochastic nature of events in the envi-
ronment, limited sensor capabilities, and difficulties in pre-
dicting how the modification of system services will affect
agents’ behaviors and the system goals. For instance, the in-
troduction of new capabilities into the system may produce
unintended effects. For example, introducing an automatic
light off switch in a house may cause residents to uncon-
sciously use more energy in other part of the house because
they feel they are already saving on lighting.

Requirements reflection, therefore, includes a considera-
tion of how to reason about uncertainty at runtime and how
to reflect this reasoning by manipulating the requirements
and architecture strata. Numerous mathematical and log-
ical frameworks exist for reasoning about uncertainty [12].
For example, probabilistic model checkers have been used
to specify and analyse properties of probabilistic transition
systems [15] and Bayesian networks enable reasoning over
probabilistic causal models [9]. However, only limited at-
tention has been shown so far to the treatment of uncer-
tainty in RE models. Our ongoing work has the objective to
develop extensions to goal-oriented requirements modeling
languages to support modeling and reasoning about uncer-
tainty in design-time and runtime models. Firstly, we have
developed the RELAX language [25], which defines a vocab-
ulary for specifying varying levels of uncertainty in natural
language requirements and whose semantics is defined for-
mally in terms of fuzzy branching temporal logic. Secondly,
we have developed a quantitative goal modelling framework
that extends KAOS goal models with a probabilistic layer
for the precise specification of quality concerns expressed in
terms of application-specific measures [17].

Because of the nature of conflicting requirements, runtime
resolutions of uncertainty inherently involve multi-objective
decision making. In SE, multi-objective decision making
techniques most often rely on constructing a utility func-
tion, defined as the weighted sum of the different objectives.
However, this approach suffers from a number of drawbacks.
Firstly, it is well known that correctly identifying the weight
of each goal is a major difficulty. Secondly, the approach
hides conflicts between multiple goals under a single aggre-
gate objective function rather than truly exposing the con-
flicts and reasoning about them.

201

We argue, in contrast, that users must be involved in the
decision making process in an interactive fashion. Consider-
ing again the scenario from Section 1, the decision-making is
necessarily multi-objective with comfort of the users, econ-
omy and the needs of individuals within a household po-
tentially in tension. At runtime we need to understand the
current behaviour of the system and cope with future be-
haviour. Such an approach provides more flexibility than
predefined utility functions as it would allow the relative im-
portance of goals to be discovered and modified at runtime .
By engaging users in the decision making process, it would
also increase their trust and understanding of the system’s
adaptive behaviour. The core technical challenge here is to
integrate and adapt existing interactive multi-criteria deci-
sion approaches to the problem of making runtime decisions
about alternatives in goal models. We envisage a mathe-
matical framework that supports decision making about re-
quirements alternatives; the parameters used in the decision
model should be measurable so that they can be related
to the data collected during system monitoring; and the
computational complexity of the decision model should be
such that it can be evaluated efficiently at runtime. Such a
framework can build on existing outranking and interactive
approaches to multi-criteria decision making [20], as well as
on our previous research on evaluating alternatives [17] and
dealing with conflicts in goal models [23].

4. CONCLUSIONS
We have argued that a SAS may need to address require-

ments we are only aware of once the system is running. We
propose a change of perspective for developing and maintain-
ing requirements for SASs. New approaches should follow
other non-traditional principles such as:

• The key role of explicit runtime representation of systems’
requirements and goals as an appropriate formalism for
endowing systems with self-awareness capabilities;

• The subsequent need to maintain the relationship at run-
time between goals and underlying system structures;

• A recognition that uncertainty is intrinsic to SASs and
therefore must be managed at all stages of the life-cycle
including runtime.

We believe that uncertainty can only be handled effec-
tively if a SAS’s requirements can be reasoned over and
(e.g.) re-prioritized at runtime. This is what mandates the
availability of requirements as runtime objects along with
their interrelationships and dependencies, and their relation-
ships with the architecture of the SAS with the monitorable
phenomena of the environment. We also envision that re-
quirements reflection will allow higher-level kinds of adap-
tation more related to system evolution than the standard
adaptation provided by standard control systems. We have
pointed out challenges associated with the above principles.
To address these challenges contributions from colleagues in
different fields including (e.g.) architectural reflection and
autonomic computing, as well as from RE, will be needed.

5. REFERENCES
[1] N. Bencomo, G. Blair, and R. France. Guest editor’s

introduction: Models@run.time. IEEE Software, 2009.
[2] L. Capra, G. Blair, C. Mascolo, W. Emmerich, and

P. Grace. Exploiting reflection in mobile computing
middleware. ACM SIGMOBILE Mobile Computing and
Communications Review, 6(4):34–44, 2002.

[3] B. H. Cheng, H. Giese, P. Inverardi, J. Magee, and
R. de Lemos. Software engineering for self-adaptive
systems: A research road map, dagstuhl-seminar on
software engineering for self-adaptive systems. 2008.

[4] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle.
Goal-based modeling approach to develop requirements for
adaptive systems with environmental uncertainty. In
MODELS Conf., 2009.

[5] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan. A generic component model
for building systems software. ACM Transactions on
Computer Systems, February 2008.

[6] A. Dingwall-Smith. Run-Time Monitoring of Goal-Oriented
Requirements Specifications. PhD thesis, UCL, UK, 2006.

[7] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and
F. Zambonelli. A survey of autonomic communications.
ACM Trans. on Auton. and Adapt. Systems, 2, 2006.

[8] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior.
Workshop Software Specification and Design, 1998.

[9] N. Fenton and M. Neil. Making decisions: using bayesian
nets and mcda. Knowl.-Based Syst., 14(7):307–325, 2001.

[10] S. Fickas and M. Feather. Requirements monitoring in
dynamic environments. In RE Conf., 1995.

[11] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and
B. H. Cheng. Goal-based modeling of dynamically adaptive
system requirements. In ECBS Conf., 2008.

[12] J. Y. Halpern. Reasoning about Uncertainty. The MIT
Press, October 2003.

[13] F. Kon, F. Costa, G. Blair, and R. Campbell. The case for
reflective middleware. Communications of the ACM,
45(6):33–38, 2002.

[14] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE ’07: 2007 Future of
Software Engineering, pages 259–268. IEEE Computer
Society, 2007.

[15] M. Z. Kwiatkowska, G. Norman, and D. Parker.
Probabilistic symbolic model checking with prism: A
hybrid approach. In TACAS, pages 52–66, 2002.

[16] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu.
Towards requirements-driven autonomic systems design. In
DEAS Workshop, 2005.

[17] E. Letier and A. van Lamsweerde. Reasoning about partial
goal satisfaction for requirements and design engineering.
In Symposium on Foundations of software engineering,
pages 53–62, NY, USA, 2004. ACM.

[18] P. Maes. Computional reflection. PhD thesis, Vrije
Universiteit, 1987.

[19] W. N. Robinson. A requirements monitoring framework for
enterprise systems. Requir. Eng., 11(1):17–41, 2006.

[20] B. Roy. Multicriteria Methodology for Decision Aiding.
Kluwer Academic, Dordrecht, 1996.

[21] G. Spanoudakis and K. Mahbub. Requirements monitoring
for service-based systems: Towards a framework based on
event calculus. In ASE, pages 379–384, 2004.

[22] A. van Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software Specifications.
John Wiley & Sons, 2009.

[23] A. van Lamsweerde, R. Darimont, and E. Letier. Managing
conflicts in goal-driven requirements engineering. IEEE
Trans. Sof. Eng., 24(11), 1998.

[24] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos.
Monitoring and diagnosing software requirements. Autom.
Softw. Eng., 16(1):3–35, 2009.

[25] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M.
Bruel. Relax: Incorporating uncertainty into the
specification of self-adaptive systems”. In RE Conf., 2009.

[26] E. Yu. Towards modeling and reasoning support for
early-phase requirements engineering. In RE Conf., USA,
1997.

202

