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ABSTRACT
Formal specifications have been a focus of software engi-

in some formal language and at some level of abstraction, of
a collection of properties some system should satisfy.

neering research for many years and have been applied in aThis purposely general definition covers different notions

wide variety of settings. Their industrial use is still limited
but has been steadily growing. After recalling the essence,
role, usage, and pitfalls of formal specification, the paper
reviews the main specification paradigms to date and dis-
cuss their evaluation criteria. It then provides a brief assess-
ment of the current strengths and weaknesses of today’s
formal specification technology. This provides a basis for
formulating a number of requirements for formal specifica-
tion to become a core software engineering activity in the
future.

1. INTRODUCTION

dependent on what the word “system” really covers, what
kind of properties are of interest, what level of abstraction is
considered, and what kind of formal language is used.

Complex software applications are built using a series of
development steps: (a) high-level goals are identified and
refined until a set of requirements on the software and
assumptions on the environment can be made precise to sat-
isfy such goals; (b) a software architecture, made of inter-
connected software components, is designed to satisfy such
requirements; and (c) the various components are imple-
mented and integrated so as to satisfy the architectural
descriptions. All along this development/satisfaction chain,

Formal specifications have been considered since the goodknowledge about the application domain is often used to

old days of Computing Science. In the late nineteen forties,

guide the elaboration and to support the validation with

Turing observed that reasoning about sequential programsrespect to upstream prescriptions.

was made simpler by annotating them with properties about
program states at specific points [Ran73]. In the late sixties,
Floyd, Hoare and Naur proposed axiomatic techniques for

proving the consistency between sequential programs and

such properties, called specifications [Flo67, Hoa69,
Nau69]. Dijkstra showed how a formal calculus over such
specifications could be used constructively to derive non-
deterministic programs that meet them [Dij75]. Specific

techniques were also proposed to formally express intended

properties for special kinds of programs, notably, data-
structured programs [Par72, Lis75] and concurrent pro-
grams [Pnu77]. This was the starting point for a whole new

area of research aimed at specification-in-the-large [Par77,

SRS79, Abr80, Hen80]. The interest in formal specifica-
tions and their multiple uses in software engineering has
been growing continually since that point [Win90, Cra93,
Hin95, Cla96, Win99, SCP2K].

What are formal specifications?

Formal specifications may refer to fairly different things in
the software lifecycle; the wording is thus heavily over-
loaded. An additional source of confusion stems from the
fact that a single word is used for a product and the corre-
sponding process.

Generally speaking, farmal specifications the expression,

E]

The “system” being specified may be a descriptive model of
the domain of interest; a prescriptive model of the software
and its environment; a prescriptive model of the software
alone; a model for the user interface; the software architec-
ture; a model of some process to be followed; and so on.
The “properties” under consideration may refer to high-
level goals; functional requirements; non-functional
requirements about timing, performance, accuracy, security,
etc.; environmental assumptions; services provided by
architectural components; protocols of interaction among
such components; and so on.

Beyond such different realizations of the general concept of
specification, there is a common idea of specifications per-
taining to theproblem domain(as opposed to the solution
domain). To make sure some solution solves a problem cor-
rectly, one must first state that problem correctly. This
dichotomy is however simplistic; a solution to a problem
may in general be given as a set of subproblems to be speci-
fied and solved in turn [Swa82]. A specification must thus
in general satisfy some higher-level specification and be
satisfied by some lower-level specifications.

“Formal” is often confused with “precise” (the former
entails the latter but the reverse is of course not true). A
specification idormal if it is expressed in a language made
of three components: rules for determining the grammatical
well-formedness of sentences (the syntax); rules for inter-
preting sentences in a precise, meaningful way within the
domain considered (the semantics); and rules for inferring
useful information from the specification (the proof theory).
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The latter component provides the basis for automated anal- from such scenarios [Lam98c];

ysis of the specification. - to produce animations of the specification in order to

The collection of properties being specified is often fairly ~check its adequacy [Hek88, Har90, Dub93, Doug94,
large; the language should thus allow the specification to be Heit96, Tho99];

organized intaunitslinked throughstructuring relationships -« to check specific forms of specification consistency/com-
- such as SpeCIa|IzatI0n, aggl’egatlon, |nStant|at|On, enrich- p|eteness efﬁciently [He|m96, He|t96],

ment, use, etc. Each unit in general has a declaration part, . . . .
where variables of interest are declared, and an assertion to generate high-level exceptions g_nd _confllct F’f.eCP”d"
part, where the intended properties on the declared variables i0NS that may make the specification unsatisfiable
are formalized. Formal specification techniques essentially [-am98b, Lam2K];

differ from semi-formal ones (such as dataflow diagramss to generate higher-level specifications such as invariants
entity-relationship diagrams or state transition diagrams) in or conditions for liveness [Lam79, Ben96, Par98, Jef98];

that the latter do not formalize the assertion part.  to drive refinements of the specification and generate
What are good specifications? proof obligations [Car90, Abr96, Dar96];

Writing a “correct” specification is very difficult - probably ¢ to generate test cases and oracles from the specification
as difficult as writing a correct program. A specification [Ber91, Ric92, Roo94, Wey94, Man95];

must beadequatethat s, it ust adauatey stte 1 prob-. 1o support formal reuse of componens through specfca:
have a meaningful semantic interpretation that makes true all ‘on mate |ng [_ a87, Reu9l, Mas97, Zar97].

specified properties taken together. It mustibambiguous ~ Formal specifications can also be generated from program
that is, it may not have multiple interpretations of interestc0d€ @s a basis for reverse engineering and software evolu-
making it true. It must beompletewith respect to higher- 10N [Gan96, Em99].

level ones, that is, the collection of properties specified musgpecify... for whom?

be sufficient to establish the latter [Yue87]. It mustdatis-
fied by lower-level ones. It should bminimal that is, it
should not state properties that are irrelevant to the proble
or that are only relevant to a solution for that problem

One of the problems with formal specifications is that they
ay concern different classes of consumers having fairly
ifferent background, abstractions and languages - clients,

domain experts, users, architects, programmers, and tools.
[Mey85]. sy X

For example, the specification of a goal or requirement
Why specify formally? should be checked by clients for adequacy; a domain

Problem specifications are essential for designing, validatdescription should be produced or checked by domain
ing, documenting, communicating, reengineering, and reysEXperts; an archnectural component spemflcatlpn should be
ing solutions. Formality helps in obtaining higher-quality S€€n in & detailed form by programmers assigned to that

specifications within such processes: it also provides th€omponent and in a more abstract form by programmers
basis for their automated support. assigned to other components using that component; a tool
should see a specification in some efficiently processable

The act of formalization in itself has been widely experi- t.m- and so on. One way to handle such clashes is to sup-
enced to raise many questions and detect serious problemsdiy ¢ o yitilingual specifications, at the price of raising con-
original informal formulations. Besides, the semantics of thesistency problems (see below).

formalism being used provides precise rules of interpretation ,
that allow many of the problems with natural language to be! iS Now well-accepted that a programming language should
overcome. A language with rich structuring facilities may P€ @ language for the programmer, not for the machine. This

also produce better structured specifications. principle is still not widely accepted for specification lan-
guages; many of them still seem to be designed for program-

As the major payoff, formal specifications may be manipu-,ars or for tools rather than for specifiers.

lated by automated tools for a wide variety of purposes:

. . . . ' 2

* to derive premises or logical consequences of the speC|f§peC'fy"' when’ _ . _
cation, for user confirmation, through deductive theoremAs seen before, there are multiple stages in the software life-
proving techniques [Owr95, Man96]; cycle at which formal specifications may enter the picture,

e.g., when modeling the domain; when elaborating the goals,

* to confirm that an operational specification satisfies morg, \.ements on the software, and assumptions about the
abstract specifications, or to generate behavioral counter:

examoles. if not. throuah algorithmic model checkin environment; when designing a functional model for the
technﬁques [Queéz CIagG Hglgl Hol97. McM93 AtI939 software; when designing the software architecture; or when
Man96, Hei98a, Cla99]; modifying or reengineering the software.

.t ‘ ‘ les to clai bout a declarati The main focus to date has been on formal specifications
0 géenerate counterexamples to claims about a declaraliNgitan during thedesignof a preliminary functional model
specification [Jac96];

for the software [Win90]. We will therefore focus the discus-

* to generate concrete scenarios illustrating desired osion of past achievements on this kind of specification
undesired features about the specification [Fic92, Hal95mainly. We will also take the viewpoint o$pecification
Hal98] or, conversely, to infer the specification inductively building since formal reasoning is covered in another chapter



of this volume. lar specification paradigm they rely on. In the sequel, we
avoid the usual, somewhat confusing model-based vs. prop-
2. FORMALIZATION: SCOPE AND PITFALLS erty-based dichotomy; the reason is that for large systems

Although close to commonsense, there are a few importarfiny. Property-based specification involves system modeling
principles and facts that are often overlooked by champion&nd any model-based specification involves system proper-
of formalization. ties.

« Specifications are never formal in the first place. To statlistory-based specification

properties precisely and formally, one must first figure outThe principle here is to specify a system by characterizing its
what these properties are. The latter must necessarily h@aximal set of admissible histories (or “behaviors”) over
formulated in a language all parties can speak and undetime. The properties of interest are specified by temporal
stand, that is, natural language. logic assertions about system objects; such assertions
Formal specifications are meaningless without a precisdlVolve operators referring to past, current and future states.
informal definition of how to interpret them in the domain 1he assertions are interpreted over time structures. Time can
considered. A formalization involves terms and predicated€ linear [Pnu77] or branching [Eme86]. Time structures can
which may have many different meanings. The specificabe discrete [Man92, Lamp94], dense [Gre86], or continuous
tion thus makes sense only if the meaning of each termiHan91]. The properties may refer to time points [Man92,
predicate is stated precisely, by mapping function/predi-am94], time intervals [Mos97], or both [Gre86, Jah8s,
cate names to functions/relations on domain objects. Thi4/|89, Ghe91]. Most often it is necessary to specify proper-
mapping must be precise but necessarily informal (to avoidies over time bounds; real-time temporal logics are therefore
infinite regression). This fairly obvious principle is often Necessary [Koy92, Dub91, Mor92, Dar93, Mos97].

neglected [Zav97]. State-based specification

Formal specification is not a mere translation process frominstead of characterizing the admissible system histories,
informal to formal. The specification of a large, complex one may characterize the admissible system states at some
system requires relevant objects and phenomena to Rgpitrary snapshot. The properties of interest are specified by
I(_jentIfIF.,'d, Intel‘related, and Char.a.ctenzed through prOp-el’(a) invariants Constraining the System Objects at any Snap_
ties of interest. Model construction and property descripshot, and (b) pre- and post-assertions constraining the appli-
tion are thus tightly coupled components of anycation of system operations at any snapshot. A pre-assertion
specification-in-the-large process. captures a weakest necessary condition on input states for
Formal specifications are hard to develop and assess.THige operation to be applied; a post-assertion captures a stron-
stems from the diversity and subtlety of errors that can b@est effect condition on output states if the operation is
made (see Section 1) and from the multiplicity of model-applied. The latter may be explicit or implicit dependent on
ing choices that can be made. As a consequence, form#hether or not the assertion contains equations defining the
specifications are rarely correct in the first place. It hagoutput constructively.

been frequently noted, however, that even wrong specifica-anguages such as Z [Abr80, Spi92, Pot96], VDM [Jon90]
tions may help finding out problems in original formula- or B [Abr96] relyon this paradigm. Object-oriented variants
tions. have been proposed as well [Lan95].

The rationale for specific modeling choices in a specificaansition-based specification

tion is important for explanation and evolution [Sou93].
Unfortunately, such rationale is rarely documented.

Instead of characterizing admissible system histories or sys-
T tem states, one may characterize the required transitions
The by-products of a formal specification process are oftefirom state to state. The properties of interest are specified by
more important than the formal specification itself; they 3 set of transition functions in the state machine transition;
include a better informal specification, obtained by feed+he transition function for a system object gives, for each
back from formal expression, structuring and angly5|s; anqlnput state and triggering event, the corresponding output
lower-level products that are more likely to satisfy themstate. The occurrence of a triggering event is a sufficient con-
thanks to such formalization/analysis. dition for the corresponding transition to take place (unlike a
To be useful, a formal system must have a limited domairPrecondition, it captures an obligation); necessary precondi-
of applicability. Specific types of systems require specifictions may also be specified to guard the transition.

types of techniques for natural expression and efficient anguages such as Statecharts [Har87], PROMELA
analysis. For example, the formal specification of a com{Hol91], STeP-SPL [Man92], RSML [Lev94] or SCR
piler must include a definition of the input grammar. A [Par95, Heit96] rely on this paradigm.

BNF-style specification would be most appropriate for this . o

domain but clearly inappropriate for the domain of pro- Functional specification

cess-control systems. There is thus no point in looking fofThe principle here is to specify a system as a structured col-
a universal specification technique. lection of mathematical functions. Two approaches may be
distinguished.

3. SPECIFICATION PARADIGMS Algebraic specificationThe functions are grouped by object
Formal specification techniques differ mainly by the particu-types that appear in their domain or codomain, thereby defin-



ing algebraic structures (or abstract data types). The propeirg update operations to be specified at each state modifica-
ties of interest are then specified as conditional equationson (as in imperative programming). History-based
that capture the effect of composing functions (typically, specifications are the main exception to this problem. How-

compositions with type generators). ever _they may also be problematig: for specifying relative
Languages such as OBJ [Fut85], ASL [Ast86], pLUSsorderings of events; e.g., [Dwy99] gives an example of a rel-
[Gau92] or LARCH [Gut93] rely on this paradigm. atively simple ordering property that requires six levels of

operator nesting in linear temporal logic! Algebraic specifi-
Higher-Order Functions The functions are grouped into cations are among those which require the most coding
logical theories. Such theories contain type definitions (posexpertise; experience reveals that many novice specifiers
sibly by means of logical predicates), variable declarationsincorrectly write fairly simple operations such as deleting an
and axioms defining the various functions in the theory.element from a set, because of the distance between their
Functions may have other functions as arguments which signtuition of what this operation is about and the required
nificantly increases the power of the language. Languagegelete/add commutativity axioms.

such as HOL [Gor93] or PVS [Cro95, Owrd5] rely on this Due to language expressiveness problems, specification cod-

paradigm. ing may require a lot of expertise; in the end it makes it ques-
Operational specification tionable whether or not the specification correctly captures

At the extreme opposite, a system may be characterized astho\e target properties of interest.

structured collection of processes that can be executed hgonstructibility, manageability and evolvabilitythe speci-
some more or less abstract machine. Early languages such fasation technique should provide facilities for building com-
Paisley [Zav82], GIST [Bal82], Petri nets or process algeplex specifications in a piecewise, incremental way. Local

bras [Hoa85, Mil89] rely on this paradigm. changes in problem features should be reflected by local
changes in the specification. These requirements depend on
4. HOW GOOD IS MY FAVORED TECHNIQUE? (a) language mechanisms for specification structuring and

Specification techniques may be evaluated and comparegPmpositional reasoning, and (b) the availability of a method
against a number of criteria. Unsurprisingly, some of thesdor incremental construction, analysis and modification.

criteria are interdependent and even conflicting; the choicéMany languages support basic structuring mechanisms for
of a reasonable compromise thus depends on the specifiefisodularizing specifications - such as encapsulation, generic-
priorities for the task and system at hand. ity, inheritance, inclusion, enrichment, etc. State-based and

Expressive power and level of coding requireds noted functional languages are probably the richest in that respect.

before, each paradigm above has some built-in semantic biagme languages also support refinement relationships as a
in order to be useful. State-based and functional specifica?asis for incremental specification development and analy-
tions focus on sequential behaviors while providing richsis, €.g., data reification [Jon90, Abr96], component compo-
structures for defining complex objects. They are thus bettegition/decomposition through logical connectors [Spi92,
targeted at transactional systems. Conversely, history-basefipad5], state composition/decomposition [Har87, Lev94],
transition-based specifications and operational specificatior® goal abstraction/refinement [Dar96].

focus on concurrent behaviors while providing only fairly U
simple structures for defining the objects being manipulatecﬁ3
They are thus better targeted at reactive systems. There a

sability. It should be possible for reasonably well-trained
eople towrite high-quality specifications. This soft, higher-

. &vel criterion of course depends on all previous ones plus a
Of. course, hybrid approaches that attempt to recover fro”f’ew more. The language should have a simple theoretical
this, e.g., [Fau92, Geo9s]. basis. This probably explains the popularity of languages
Beyond such semantic bias, the formal language shoul@uilt on simple, well-understood mathematical notions such
allow the properties of interest to be expressed without toas sets, relations and functions [Abr80, Spi92, Abr96,
much hard coding. Specification is about defining problemsOwr95]. The language should also exempt users from intri-
not about programming solutions. Ideally, there should be &acies such as, e.g., the need in state-based specifications to
simple, straightforward mapping between the natural lanspecify that “nothing else changes” through additional frame
guage formulation of a property and its formal counterpart. axioms [Bor95].

This is, unfortunately, rarely the case. Unlike natural lan-commnicability Conversely, the technique should be
guage, formal languages impose limitations. For example, gcessiple for reasonably well-trained peopleead high-
first-order language makes it impossible to refer to operag, ity specifications and check them. This criterion depends
tions as predicate arguments so that coding tricks ar n the previous ones (notably, the closeness between the

required to overcome the problem - such as the introductiog ¢ ification and its corresponding natural language formu-
of auxiliary events that encode the application of operations;

Most | K X | ref ation), and on the external format the specification may
Most languages are weak at supporting temporal referengyq ‘it explains the popularity of techniques that support
ing; explicit or implicit time references occur frequently in

. Ao tabular formats [Hen80, Lev94, Par95, Cro95, Heit96] and
natural formulations. For example, the built-in inability of diagrammatic notations [Har87, Lev94].

state-based specifications to refer to the past makes it neces-
sary to introduce auxiliary variables for encoding whetherPowerful and efficient analysisThe effectiveness of a for-
such or such event of interest has occurred, with correspondnal specification technique depends on the degree of satis-



faction of the various objectives mentioned in Section 1. Ining process was deployed and not a single error was found.
particular, there is no much sense writing formal specifica- . . .

tions without being rewarded by feedback from automatecghe success of this formal development might be explained
tools. The latter should ideally support a wide range of analPY the unusual combination of success factors. The B speci-
ysis in the space of possibilities listed in Section 1. With afication language has a simple mathematical basis that
few notable exceptions (e.g., [Hei98b]) this has mostly bee/}!OWS engineers to use it after a reasonably short period of
wishful thinking so far. Favoring one kind of analysis or training; the specification technique is multi-level and makes

another usually dictates the choice of one specification tecHt POSSible to smoothly move from an abstract model up to
nique or another. code in a provably correct way; methodological support was

- . . . provided in the form of guidelines and heuristics to guide the
The more efficient the analysis is, the more coding effort isjeyelopment and validation processes; a development/vali-

usually required on the specifier's side. This is the case fOfjation process model was first designed explicitly and inte-
specification animation based on executing operational SP€Gjrated in the company’s process model to accommodate
ifications or on term rewriting of algebraic specifications. conyentional practices such as testing (the lack of such inte-
Model checkers illustrate this as well; the unconvincedyaiion has been recognized to be a serious obstacle to the
reader may look at what their input code for a complexagoption of formal methods [Cra95]): last but not least, the
application may look like. process was supported by powerful tools.

On another hand, the more powerful the analysis is, the more
expert intervention is usually required. Proof assistants are
good illustration of this unsurprising fact [Cro95].

he maturity of specification tool technology is also steadily
Growing from year to year. Tools become more effective in
analyzing formal specifications and deriving useful informa-

It should become clear from our brief review of evaluationtion; their performance on large specifications keeps increas-
criteria that any multicriteria analysis will inevitably result in ing; they become more usable. Specification animators and
favoring a multiparadigm framework in which complemen- model checkers are particularly successful in those respects.
tary formalisms, methods and tools are integrated in a cohneMoreover there is a promising tendency towards integrating
ent way so as to combine the best of each paradigm fomultiple tools so as to offer a wide spectrum of analysis at
Specific domains, tasks, and concerns. Very pre”minarwarlous costs - from fU”y automatic, dedicated checks to

attempts have started in this direction [Nis89, Dar93, Nus93interactive assistance in difficult proofs. The SCR toolset is a
Zav93, Zav96]. good illustration of this recent trend [Hei98b].

5. TODAY'S GOOD NEWS 6. TODAY'S BAD NEWS

The number of success stories in using formal specification! SPit¢ of such good news, today's formal specification

for real systems is steadily growing from year to year. Theyt€chniques suffer a number of weaknesses. Some of these
range from to the reengineering of existing systems (e.g explain why in their present form they are inadequate for the

[Hen80, Crai93]) to the development of new systems (e_g.ypstream critical phase of requirements specification and
[Hal96, Beh99]). In the latter case, there was some reportef@/Vsis:

evidenc_e that the _deve_lopme_nt, Whi_le resulting in products of | imited scope The vast majority of techniques are limited

much higher quality, did not incur higher costs but rather the g the specification of functional properties, that is, proper-
contrary. A!though many of the stories are in the_domaln of ties about what the target system is expected to do. Non-
transportation systems, there are other domains such asgnctional properties are in general left outside any kind of
information systems, telecommunication systems, POWer formal treatment. The main exception are techniques

plant control, protocols and security. Good accounts can be gjjowing timing properties to be formalized and reasoned
found in [Cra93, Hin95, Cla96, SCP2K]. about.

A recent, fairly impressive example is worth pointing out, poor separation of concerndMost techniques provide no
[Beh99]. The Paris metro system has recently opened a new gynnrt for making a clear separation between (a) intended
Ilne_ (line 14, ToIb|ac-MadeIe|ne)..The trafﬂc_on this line is properties of the system considered, (b) assumptions about
e;nnrely c_ontrolled by software. Driverless tralns.a.md CONVeN- the environment of this system, and (c) properties of the
tional trains are both supported. The safety-critical compo- application domain. One cannot therefore make the essen-
nents of the software (located on board, along the track, and ;3| gistinction between descriptive and prescriptive prop-

on ground) were formally developed by Matra Transport  giies (called “indicative” and “optative” in [Zav97]); the
using the B abstract machine method [Abr96]. The develop- ¢ all(mixed together in the spepcification.[ I); they

ment includes abstract models of those components, refine-

ments to concrete models, and automated translation to ADA Low-level ontologies The concepts in terms of which
code. According to [Beh99], there are about 100,000 lines of problems have to be structured and formalized are pro-
B specification, covering the abstract and the concrete gramming concepts - most often, data and operations. It is
model, and 87,000 lines of ADA code. The refinement was time to raise the level of abstraction and conceptual rich-
entirely validated by formal proofs. The B tool automatically ness found in informal requirements documents - such as,
proved 28,000 lemmas and 65% of the rules added to dis- e.g., goals and their refinements, agents and their responsi-
charge proofs. Many errors were found thereby, and fixed in bilities, alternatives, and so forth [Fea87, Fic92, Dar93,
the concurrent development. In addition, a conventional test- Myl98, Myl99].



* Isolation. With a few exceptions mentioned before, formal ¢« Support for comparative analysi€xperience in teaching
specification techniques are isolated from other software formal specification reveals that different specifiers with
products and processes both vertically and horizontally. the same background may end up with fairly different
Vertical isolation: specification techniques generally pay specifications for the same initial problem formulation.
no attention to what upstream products in the software The same is true for programs, but in the latter case there is
lifecycle the formal specification is coming from (viz. at least an ultimate moment of truth - the program is run-
goals, requirements, assumptions) nor what downstream ning satisfactorily or not. Beyond the specification quali-
products the formal specification is leading to (viz. archi- ties recalled in Section 1, we need precise criteria and
tectural componentsHorizontal isolation:the techniques measures for assessing specifications and comparing their
generally do not pay attention to what companion products relative merits.
the formal specification should be linked to (e.g., the cor-,
responding informal specification, a documentation of
choices, validation data, project management information,
etc.).

Integration. Tomorrow’s technology should care for the
vertical and horizontal integration of formal specifications
within the software lifecycle - from high-level goals to
functional design to architectural components; and from
« Poor guidance The main emphasis in the formal specifi- informal formulation to formal specification to related
cation literature has been on suitable sets of notations and Products.
on a posteriori analysis of specifications written Using . pigher level of abstraction Specification techniques
such.r)ota'tlons. Constructive methoc!s for building correct should move from functional design to requirements engi-
specifications for complex systems in a safe, systematic, neering where the impact of errors is even more crucial.

!ncremental way are by and large non-existent. Instead of \ys therefore need languages, methods and tools that sup-
inventing more and more languages, one should put more 4t richer, problem-oriented ontologies upstream to the

effort in devising and validating methods for elaboration
and modification of good specifications (in the sense
recalled in Section 1).

» Cost.Many formal specification techniques require high
expertise in formal systems in general (and mathematical
logic in particular), in analysis techniques, and in thee
white-box use of tools. Due to the scarcity of such exper-
tise their use in industrial projects is nowadays still highly
limited in spite of the promised benefits.

» Poor tool feedbackMany analysis tools are effective at
pointing out problems, but in general they do a poor job of*

program-oriented ones currently supported. Preliminary
attempts in this direction include [Myl92, Dar96] for goal-
oriented refinement, [Myl92, Lam98b] for goal-level con-
flict analysis, and [Lam2K] for goal-level exception han-
dling.

Richer structuring mechanismsMost constructs avail-
able so far for modularizing large specifications have been
lifted from programming counterparts. Problem-oriented
constructs should be available as well such as, e.g., stake-
holder viewpoints [Nus93] or problem views [Jac95].

Extended scope Specification techniques need to be

(a) suggesting causes at the root of such problems, and (b)extended in order to cope with the various categories of

proposing recovery actions.

7. BACK TO THE FUTURE

The discussion above provides the material for paving the
road ahead. Tomorrow’s technology should meet the follow-
ing requirements and challenges for formal specification to
become an essential vehicle for the engineering or reengi-
neering of higher-quality software.

» ConstructivenessThe almost exclusive focus on a poste- *
riori analysis of possibly poor specifications should in part
be shifted towards a more constructive approach in which
specifications are built incrementally from higher-level
ones in a way that guarantees high quality by construction,
One could then really speak of a method, typically made
of a collection of model building strategies, style selection
rules, specification derivation rules, guidelines, and heu-
ristics; some might be domain-independent, some others
might be domain-specific. Such a method should provide
active guidance in the specifier's decision making process.
It might be supported by automated specification assis-
tants that would provide advice at decision points ance
record the process followed, for documentation and possi-
ble replay in case of later evolution.

non-functional properties that are elicited during require-
ments engineering and play a prominent role during archi-
tectural design, e.g., properties about performance,
integrity, confidentiality, accuracy of information, avail-
ability, fault-tolerance, operational costs, maintainability,
and so forth. The qualitative reasoning techniques in
[Myl92] are a first step in this direction. Specific catego-
ries might require specific language features and analysis
techniques.

Separation of concerns As discussed before, formal
specification languages should enforce a strict separation
between descriptive and prescriptive properties, to be
exploited by analysis tools accordingly.

Lightweight techniquesThe use of formal specifications
should not require deep expertise in formal systems. The
mathematical intricacies should be hidden; analysis tools
should be usable like compilers. The work on pattern-
based specification in [Dwy99] is a very promising step in
this direction. Patterns may also be used to reuse proofs
and generate specifications [Dar96, Lam2K].

Multiparadigm specification Complex systems have mul-
tiple facets. Since no single paradigm will ever serve all
purposes due to semantic biases, frameworks are needed in



which multiple paradigms can be combined in a semanti- for some recent work in this direction). A constructive
cally meaningful way so that the best features of each par- approach to formal specification should also favor the
adigm can be exploited. The various facets then need to be reuse of specifications that proved to be good and effective
linked through consistency rules [Nus93]. Multiparadigm for similar systems.

frameworks should be able to integrate various formal Ian-. M bility of To b o th
guages, semi-formal ones, and natural language, togethér,"'€asurabliity of progress 1o be more convincing, the
benefits of using formal specifications in software engi-

with corresponding analysis technigues and tools. Prelimi- . - o~
b g y g neering should be measurable thanks to metrics similar to

nary linguistic attempts in this direction combine semantic h qf o : tt ductivit
nets, history-based specification, and state-based specifica"0S€ US€d Tor measuring increase in soitware productivity.

tion [Dar93]; or state-based specification and transition-,
based specification [Zav96]. While multilingual integra- 8. CONCLUSION

tion is fairly easy to achieve among semi-formal languagesSoftware is increasingly invading many aspects of our life.
it raises difficult semantic issues for formal languages. We increasingly need high-quality software. Formal specifi-
cations offer a wide spectrum of possible paths towards that
: ; h goal. Therefore they are receiving increasing attention in the
support different levels of optional analysis - from cheap,,.44emia and the industry. Still, there is a long way to go
surface-level analysis (such as traceability analysis, statigetore formal specifications can be used by the average soft-
semantics checks and qualitative reasoning) 0 MOrg e engineer to provide reasonably fast and visible reward.
EXpEnsive, dee_p-level a”?"ys's (S.UCh as algorlthmlc VerlflAmong the many challenges raised, we believe that the crit-
cation, deductive reasoning, or inductive reasoning frofM.,| g ccess factors will be the provision of constructive

exarrrp(;es).l Thhe more f hdeavyéwe;]ght butt((j)ng X"O”'Oll.bbeassistance in specification development, analysis, and evolu-
pushed only when needed and where needed. A multibu, - e vertical and horizontal integration of formal speci-

ton environment would also allow end-users to use the YPfications within  the software lifecycle: higher-level

ical facilitigs rﬁ)rovide% by”standarq CAShE tools in a ﬁth abstractions for requirements specification and analysis; the
stagide, ?P ¢ Ien grr‘]"‘ (;Ja y inter into_the mc;_rg comp e)élvailability of formal techniques for non-functional aspects;
world of formal methods as they get more confidence. 5 jightweight interfaces for multiparadigm specification

Multiformat specification To enhance the communicabil- and analysis.
ity of the same specification fragment among different
types of producers/consumers, the fragment should bAcknowledgment.
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