
Object-Oriented Modeling: A Roadmap

Gregor Engels

University of Paderborn
Dept. of Computer Science

D-33095 Paderborn, Germany
Tel.: +49-5251-60 3337

engels@upb.de

Luuk Groenewegen

Leiden University
LIACS, P.O. Box 9512

NL-2300 RA Leiden, The Netherlands
Tel.: +31-71-527 7139

luuk@liacs.nl

ABSTRACT

Object-oriented modeling has become the de-facto standard
in the early phases of a software development process
during the last decade. The current state-of-the-art is
dominated by the existence of the Unified Modeling
Language (UML), the development of which has been
initiated and pushed by industry.

This paper presents a list of requirements for an ideal
object-oriented modeling language and compares it with
the achievements of UML and other object-oriented
modeling approaches. This forms the base for the
discussion of a roadmap for object-oriented modeling,
which is structured according to a classification scheme of
six different themes, which are language-, model- or
process-related, respectively.
Keywords

Object-oriented modeling, UML, profile, views, patterns,
frameworks, development process

1. INTRODUCTION
It is one of the main objectives of the software engineering
discipline to support the complex and hence error-prone
software development task by offering sophisticated
concepts, languages, techniques, and tools to all
stakeholders involved.

An important and nowadays commonly accepted approach
within software engineering is the usage of a software
development process model, where in particular the overall
software development task is separated into a series of
dedicated subtasks. A substantial constituent of such a
stepwise approach is the development of a system model.
Such a model describes the requirements for the software

system to be realized and forms an abstraction in two ways
(cf. Fig. 1). First, it abstracts from real world details which
are not relevant for the intended software system. Second, it
also abstracts from the implementation details and hence
precedes the actual implementation in a programming
language.

The usefulness of an abstract system model was already
recognized in the 1970s, when structured methods were
proposed as software development methods. These
methods offered Entity-Relationship diagrams [5] to model
the data aspect of a system, and data flow diagrams or
functional decomposition techniques to model the
functional, behavioral aspect of a system. The main

drawbacks of these structured approaches were the often
missing horizontal consistency between the data and
behavior part within the overall system model, and the
vertical mismatch of concepts between the real world
domain and the model as well as between the model and the
implementation.

As a solution to these drawbacks, the concept of an
abstract data type, where data and behavior of objects are
closely coupled, became popular within the 1980s. This
concept then formed the base for the object-oriented
paradigm and for the development of a variety of new

analyse
and design

real
world

model

program
code

abstracts from

abstracts from

Figure 1: Role of model within development process

Taken From:
"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000
Order number is 592000-1, ISBN 1-58113-253-0.
ACM E-Store: http://store.acm.org/acmstore

object-oriented programming languages, database systems,
as well as modeling approaches.

Nowadays, the object-oriented paradigm has become the
standard approach throughout the whole software
development process. In particular, object-oriented
languages like C++ or Java have become the de facto
standard for programming. The same holds for the analysis
and design phases within a software development process,
where object-oriented modeling approaches are becoming
more and more the standard ones.

The success of object-oriented modeling approaches was
hindered in the beginning of the 90s due to the fact that
surely more than fifty object-oriented modeling approaches
claimed to be the right one. This so-called method war came
to an end by an industrial initiative, which pushed the
development of the meanwhile standardized object-oriented
modeling language UML (Unified Modeling Language) [4].

But, despite the fact that it has been standardized, UML is
still a moving target. In particular, the above mentioned
horizontal and vertical inconsistencies are still to be
resolved:

� The currently offered language features of UML are
not real world-specific, i.e., domain-specific enough,
since UML was designed as a general-purpose
modeling language.

� Parts of the context-sensitive syntax as well as the
semantics has not yet been stated formally, which
allows a lot of different interpretations of a UML
model.

� Furthermore, the (possibly automatic) transition from
an UML model towards an implementation is still an
open issue.

Nevertheless, UML plays a very dominant role in the
object-oriented modeling scene. It caused a lot of
researchers as well as practitioners to orientate their work
along UML issues and to focus on appropriate adjustments
of UML. These are, for example, domain-specific extensions
of UML as, e.g., in the real-time domain, or semantic
definitions for (parts of) UML.

Also this article is influenced by the existence of UML. But,
it is not intended to be an article on UML. The interested
reader is referred to corresponding web pages (see links at
the end of the article) or to numerous articles in journals and
conference proceedings (e.g., [3, 22]).

The structure and objective of this article are as follows:

In section 2, requirements for an ideal object-oriented
modeling language are presented. Section 3 summarizes the
state-of-the-art in the area of object-oriented modeling
languages. Due to the prominent role of UML, it is partially
a brief survey on UML. Section 4 illustrates the still existing
shortcomings in the field of object-oriented modeling and
presents a structured view on the open issues in the field.
An important contribution of this section is to draw a virtual

map by identifying the main topics within the field of object-
oriented modeling as regions in a virtual landscape. In
particular, section 4 presents a layered classification scheme
of topics and illustrates existing drawbacks and approaches
to overcome them. Thus, this illustration is combined with
a lot of references to existing promising approaches to
overcome existing deficiencies. Obviously, such a
presentation can not be complete and is influenced by the
authors' background. But, the presented classification
scheme will help to structure the road for research and
development in the field of object-oriented modeling within
the next couple of years. The article closes with some
conclusions in section 5 and a reference list as well as list of
related links to get further information.

2. REQUIREMENTS
The starting point on the road map is the question: what do
we expect, or rather require from an ideal object-oriented
modeling approach? So, we first discuss the requirements
for an ideal object-oriented modeling approach. As object-
oriented modeling aims at being central to the whole
software engineering life cycle, the well-known software
engineering principles and qualities, so expertly explained in
[24], certainly apply.

In the particular context of object-orientation, however, we
can be substantially more specific about many of these
principles and qualities. So, we start studying object-
oriented modeling by reopening the discussion on software
engineering principles and qualities. The discussion
concerns both the modeling language underlying the
approach and the steps taken in the approach. Thus, we
prepare the ground for the road map.

What do we want? Basically we want object-oriented
modeling to be sufficiently user-friendly to all kinds of
possible stakeholders. That is, for all clients of any model,
its relevant parts expressed in the modeling language, must
be understandable, must be clear even. For the modeler as
well as for all other persons involved in the modeling
activity, any model must be expressive, precise and clear as
well. As these are properties for any model, they can be
considered as properties of the modeling language in the
sense that the language should be such that it comprises
only models with the required properties.

Precision immediately leads to the required qualities of
correctness, reliability and robustness. Hence not only the
syntax, but also the semantics of the modeling language has
to be well defined, in order to make model review or even
model checking possible. Based on the semantics, at least
some mild forms of model review can be performed, e.g.
through prototyping, animation or other forms of validation.
In addition, stricter forms of checking might be performed
through verification, at least partial.

A possible way towards user-friendliness as well as to
correctness is indicated by another software engineering
principle, separation of concerns. By means of this
principle, components of a model can be formed each with a

certain role possibly reflecting existing roles from the
problem domain, views on a model can be defined each
conforming to the viewpoint of a certain class of users,
aspects of the model can be discriminated such as data,
behavior, functionality, communication, security, timeliness.

In particular, the general software engineering principle of
separation of concerns combined with object-oriented
modeling characteristics has turned out to be very useful.
What are these object-oriented characteristics? The basic
idea of object-orientation is the consequent application of
the abstract data type concept, combining data and
functionality. The abstract data type concept is applied in
the context of the architecture of any object-oriented model.
This architecture first of all advocates the distribution of
logically separated model parts, the classes. Secondly, it
advocates their (re)integration. The integration actually
links the distributed classes into one model consisting of
(distributed) parts that are carefully kept consistent, e.g. via
the behavioral interfaces of the classes. In addition, the
architecture has a number of other properties which are
appropriate. Not only is there consistency between the
model parts, but to a certain extent also aspects as data,
behavior, functionality and communication are consistently
incorporated and integrated.

Furthermore, apart from consistency between the parts, the
object-oriented model architecture advocates homogeneity
in the model parts: they all are classes. In line with Meyer's
pronouncement "Objects are the only modules" [36],
compositions of classes in the form of modules or packages
should result in something similar: the package or the
aggregation itself should be a class. As a class, such a
package should unite all aspects of its constituting classes
in a consistent manner, such that it can be consistently
integrated into the rest of the model.

Through the properties of homogeneity and of consistency
with respect to its model parts, object-oriented modeling
gives a particular meaning to the software engineering
principles of modularization and of separation of concerns.
It should lead to full scalability of the modeling, since a
whole model can be considered as one package, with the
properties of a class, which can be integrated in a larger
model in a consistent manner.

Furthermore, also views on the model should lead to model
parts which as packages are homogeneous in form. This
should make consistent view integration considerably
easier.

The particular combination of the software engineering
principles separation of concerns and modularization with
the object-oriented properties of consistency and
homogeneity can be exploited to a far larger extent in the
embedding of object-oriented modeling in the overall
development process. Then, the actual support in the
software engineering process becomes apparent from the
incrementality in the modeling it allows in combination with
a well-guarded consistency between older and newer parts

and views. Then, the support also becomes apparent from
the smooth transition from informal requirements towards
formal model and from the smooth transition from formal
model towards programming code. In addition, effective
tool support can really improve the software engineering
process. In particular, the consistency property of object-
oriented modeling with respect to the model parts, the views
and the aspects can be fully exploited. This helps a modeler
to be aware of the consequences of all kinds of modeling
choices in an early stage of the modeling.

In view of the great number of different and varying
stakeholders of an object-oriented model, there is another
point to user-friendliness we want to stress. In the context
of the recent globalization as global workbench and global
village, standardization of the object-oriented modeling
language is absolutely necessary. As the homogeneity of
small and large model parts is to lead to integration and
reuse that should be easier to perform because of the well-
guarded consistency, it is crucial that every stakeholder
sticks to the standard. This is true within the same project,
but also within the same problem domain. But on the other
hand there should be enough flexibility in the language to
allow for experiments with not (yet) standardized variants of
or extensions to the language. Which balance between
standardization and nonconformity is wise, in order to give
sufficient opportunity to investigate possible changes to
the language? An important guideline for incorporating any
form of anticipation of change in the language should be
that homogeneity of as well as consistency between model
parts is to be kept. As we expect, the guideline actually
supports the anticipation of change, since it structures
possible language extensions.

Summarizing, we come to the following requirements for an
ideal object-oriented modeling language.

If we did not mention the other principles and qualities
introduced in [24], it is not because we think they are less
important. They are important. The particular combination,
however, of object-orientation with separation of concerns
and modularization gives rise to particular consequences
with respect to these other principles and qualities, as we
will see in Section 4 where we discus future perspectives.

� User-friendliness, leading to understandability and
precision.

� Precision leading to correctness as well as to
richness of details, such as model parts, views and
aspects.

� Understandability together with separation of
concerns and modularization, combined with
object-orientation, leading to homogeneity of and
consistency between model parts, views and
aspects.

But, before that we continue with a discussion in the next
section of where we are now.

3. STATE-OF-THE-ART
After having gathered the requirements for an ideal object-
oriented modeling approach, we will briefly summarize in
this section the current state-of-the-art in object-oriented
modeling in industry and research. This forms the basis for
identifying drawbacks and open issues to be investigated
within the next couple of years.

Object-oriented modeling in all areas is nowadays
dominated by the Unified Modeling Language (UML)[4].
This language has been accepted as industrial standard in
November 1997 by the OMG (Object Management Group).
UML was developed as solution to the so-called object-
oriented method war, which rose up in the beginning of the
1990s, where more than fifty different object-oriented
modeling approaches could be identified in the software
industry. Under the leadership of the three experienced
object-oriented methodologists Grady Booch, Ivar
Jacobson, and James Rumbaugh, and with extensive
feedback of a large industrial consortium, an agreement on
one object-oriented modeling language and, in particular, on
one concrete notation for language constructs was reached
in an incremental and iterative decision process. For today,
UML version 1.3 represents the currently accepted
industrial standard [37].

UML was intended as a general purpose object-oriented
modeling language assembling variants of different already
existing modeling languages which are suited to model
certain aspects of a system. In particular, the following
languages are part of UML:

� use case diagrams to model the main functionality of a
system as well as the main involved actor roles.

� class / object diagrams to model all structural aspects
of a system. These diagrams originate from Entity-
Relationship diagrams [5] and are useful to model the
structure of single objects, their possible structural
relationships as well as the signature of operations.

� different forms of behavioral diagrams to model
dynamic aspects of a system. These comprise

� a variant of Harel's statecharts [26] for modeling
system or object states and their possible
transitions,

� activity diagrams as dual interpretation of
statecharts for modeling procedural control flow,
and

� sequence diagrams as a variant of message
sequence charts (MSCs) [29] and so-called
collaboration diagrams to model the interaction
between objects over the time.

� two forms of implementation diagrams, i.e., the
component diagram to model the concrete software
units and their interrelations, and the deployment

diagram to model the arrangement of run-time
components on run-time resources such as a
processor, device, or memory.

While all these sublanguages of UML are graphical or
diagrammatic languages, an additional textual language is
provided by UML, to express static consistency constraints
on sets of objects and their interrelations. This is the object
constraint language (OCL) [44].

In order to manage huge models, a purely syntactical
package concept is offered by UML, too. It allows to divide
a huge model into smaller parts, so-called packages, with
clearly defined dependency relations between them.

The main focus of the OMG standardization effort so far
was an agreement on a commonly accepted standard
notation for all these diagram types, while an agreement on
a formally defined and precise semantics was postponed to
the next standardization phase. Currently, the semantics of
UML language constructs is only defined in a textual,
informal way. By using a layered language definition
approach, the abstract syntax of UML diagrams has been
defined precisely by the usage of a so-called metamodel.
This is itself a UML class diagram together with OCL-
constraints and it defines the context-free as well as
context-sensitive syntax of all UML diagram types.

Despite the definitely dominant role of UML, competing and
extending approaches towards object-oriented modeling
exist in industry as well as in academia. Well-known
examples of these modeling approaches are the OPEN
Modeling Language, OML [20], or the Business Object
Notation, BON [38].

In particular, domain-specific approaches have been
developed in the past decades. Examples are modeling
approaches

� for real-time and embedded systems (e.g. ROOM [40])

� for state-based, interactive systems (e.g. Statecharts
[26]),

� for reactive and concurrent systems as e.g. Petri Net-
based approaches [27] or logic-based approaches like
OBLOG [41] or TROLL [31], or

� for concurrent, collaborating systems (e.g. SOCCA
[14]).

Beside being domain-specific, these approaches differ from
the current state of UML in that they often come along with
a precisely defined semantics. A reason for this is that these
approaches are often centered upon one specific diagram
type, viewing all other diagram types as extensions of this
basic type.

These two drawbacks of being a general-purpose language
and lacking a precise semantics have been identified by the
UML standardization groups and have led to establishing
corresponding task groups and related RFPs (Request For
Proposals) by the OMG (cf. [34]) to overcome these
shortcomings. It has to be expected that further versions of

UML as well as proposals for domain-specific extensions
(so-called profiles) will be developed and published within
the next years.

Beside being too abstract in case of domain-specific
applications, the general-purpose nature of UML also
missed an appropriate process support for deploying the
various UML diagram types. This situation has been
improved in the meantime, as several development methods
have been proposed in the literature. Prominent examples
are the Unified Process [30], the Catalysis approach [11], or
the approach for real-time applications in [10].

Finally, a great variety of commercial software tools are
available on the market. Most of them are still under
development in the sense that they support only parts of
the complete UML, that they do not offer sufficient process
support, or that they are hard to integrate within an overall
software development environment.

4. PERSPECTIVES
Based on the above discussion of requirements and of the
state-of-the-art, we shall investigate the landscape of
drawbacks and open issues in order to find the road for
research and development tasks for the next couple of
years.

First, we start with structuring the landscape and
identifying regions of related topics. Thus, by applying the
principle of separation of concerns to our own presentation,
we yield the following six regions illustrated as packages in
UML notation and interrelated by a dependency relation (cf.
Fig. 2):

1.) language structure: the definition and architecture of an
object-oriented modeling language itself, ranging from core
elements to application-specific extensions;

2.) model constituents: the model parts that reflect the way
one wants to separate one's concerns;

3.) model composition: grouping the constituents into some
integrated unity based on relationships as aggregation,
refinement, etc.;

4.) modeling process: support for the process of
constructing a model;

5.) model review: techniques to ensure the quality of the
built model and to verify expected and required properties
of the model;

6.) embedding the modeling in the whole software
development process: consequences for the software life
cycle.

The order of these themes exhibits some interesting
structure, too. Let us suppose for a - really very short -
moment, we study the themes strictly subsequently. First,
we study a language as formalism. Then we study elements
- the constituents and their composition - from the
descriptions formulated in the language. Next we study how
to come up with such a description, followed by studying
how to check such a description. Finally, we study
integrating the last two processes into their umbrella
software engineering process.

This is very similar to the (pre)history of software
engineering: to develop programming languages, to identify
basic program elements, to define the programming process,
to define the testing process, to integrate the latter two
processes into their umbrella business process, being the
software engineering process. In the past, when we still had
to learn the process of software engineering, the latter
series of themes from programming language to process
embedding were studied one after the other, spanning a
period of over forty years. In the case of object-oriented
modeling languages, we can organize the study of themes
from the regions in parallel, while being aware of the
structure these themes fit in. This can considerably reduce
the time span of research, maybe ten years instead of forty.

To summarize, it is the structure of the themes that is crucial
for understanding the relevance of the topics to be studied.
Therefore, in the discussion below some of the topics will
be mainly illustrative for the structure in the grouping of the
topics. In such a case we will content ourselves with only a
very short description of the topic.

4.1 Language Structure
The classical basics of a language are its syntax and its
semantics. From the ongoing research activities concerning
UML two important problems emerge. Whereas the syntax
of this has been precisely described by using a metamodel
approach, this does not hold for the semantics. When it
comes to describing the meaning of the various syntactic
language constructs, usually English is used with its
inherent informalities and ambiguities. The other problem is
the large and complex scope of the language. An extra
complication are the built-in features for incorporating

language
structure

model
constituents

model
composition

modeling process
(in-the-small)

model review

modeling process
(in-the-large)

Figure 2: Regions of the object-oriented modeling
landscape

anticipation of change into the language, such as
stereotypes, tagged values and constraints. On the one
hand this makes UML an almost guaranteed part of any
future object-oriented modeling language. UML, so to say,
can serve as the starting point for such a future language.
On the other hand, the nature as well as the meaningful use
of these features still needs further study.

Because of the highly complex nature of such an object-
oriented modeling language we propose to add a layered
structure to the language (cf. Figure 3). This is in line with
current work on UML 2.0 as well as of the precise UML
group, where an improved layered architecture of the UML
is a major point of discussion [34, 18].

The first, innermost layer or shell contains the core
language. It contains the basic language elements of UML,
its basic building blocks. It is to be a point of study which
language elements will belong to the core. Most probably,
classes, relationships, i.e., class diagrams, have to be put
there. Also one or two from the triple use cases, activity
diagrams, state machines, representing the more simple
behavior modeling elements, will belong to the core, and
may be even some form of interaction diagram will also
belong to it. Finally, also the constraint language OCL will
belong to this core. It has to be discussed, what are useful,
necessary criteria for a language element to belong to the
core. A possible criterion could be, whether the semantics
of that element is completely defined and can be expressed
and understood in a relatively easy manner.

The second layer contains the other language elements
being the less basic elements of UML. It is an important
point of research and part of this second layer to
investigate how the different sublanguages of an object-
oriented modeling language are interrelated. This holds for
instance for the interrelation between statecharts and
interaction diagrams, but also the connection between OCL
specifications and the remaining UML model [8].

Furthermore, the concrete syntax of an object-oriented
modeling language has to be studied. In particular, the role
of so-called hybrid languages - combining textual and
graphical notations - has to be investigated (cf. [1]), as it
might not always be true that graphical (or textual, resp.,)
representations are more easily comprehensible for a
potential user. For instance, graphical representations for
the OCL, so-called constraint diagrams, are currently
investigated as alternative for the originally proposed
textual notation [32].

In addition, the completeness of an object-oriented
modeling language has to be studied. This means whether
appropriate language features are offered for all
perspectives of a system to be modeled. For instance, for
the description of what happens during execution, i.e., how
object structures are rearranged and object values are
changed, graph transformations as in [21] could be taken
into account.

Another point of study that seems interesting, is the binary
character of some relations between constituents. For
instance, actual calling of a method of an object is normally
done from one other object. This is the typical caller - callee
relation. Is this necessary? Could it be useful, even
clarifying, if the number of two participants in this relation
could be generalized into some larger number. First results
of the study of these so-called multi-methods can be found
in [39]. This might result in new forms of dependency and
influence and therefore of consistency.

The definition of the semantics of an object-oriented
modeling language is a hard and difficult task due to the
inherent divergence of the different sublanguages of a fully-
fledged object-oriented modeling language like UML.
Currently, different approaches are investigated like
operational ones based on state transition systems or graph
transformation systems, or denotational ones. In any case,
it is a fact that a precise and formal semantics is a
prerequisite for any type of model review and model
checking and of embedding the model into the overall
software development process.

The third layer (cf. Fig. 3) consists of the domain-specific
extensions to the language, so-called domain-specific
profiles and domain-specific frameworks. Here, we see the
extensions to UML in the context of a particular domain. To
give an impression of such domains and domain-related
ongoing activities, we mention the domains of real-time
applications [10, 40], multimedia applications [43], web
applications [7] and last but not least the software
development process [30]. The profiles are formulated in
terms of the UML´s extensibility mechanisms, i.e.,
stereotypes, tagged values and constraints.

An alternative approach to yield a domain-specific
adaptation of a modeling language is the usage of a
domain-specific framework . Frameworks are architectural

Figure 3: Language layers

modeling
language

domain-specific
extensions

application-specific
extensions

core language

language

patterns, i.e., they form a partial model, which expresses
common basic structures and behavior within a certain
domain. They can be extended by refinement and
specialization to yield a complete model for a certain
application. The usage of UML for describing a framework
for business processes has been studied, for instance, in
[35]. As a framework is defined as an architectural pattern,
we thus see patterns return as elements of our third layer. It
is intriguing to investigate in what sense and under what
circumstances patterns (cf. [23]) can be an alternative to the
use of UML´s extensibility mechanisms.

The fourth layer contains the application-specific
extensions to the language on top of the domain-specific
extensions from the previous layer. The prefaces as
discussed in [9] belong to this layer. Depending on the
concrete context of a certain application, so-called semantic
variation points occurring in such a preface have to be
fixed, thus pin-pointing the pragmatics for that application.
There seems to be some similarity with the frameworks
mentioned above, so on this level, too, we see the patterns
return.

In this subsection, we have proposed a shell-layered
language structure. The innermost shell contains the most
general elements, the outermost shell the least general ones.
As patterns cover the full range of recurring problems,
whether this is over all domains, or restricted to one domain
but over all applications, or just restricted to one type of
application, we see the patterns occur in three out of four
shell layers.

It is very imaginable that the impact of the elements in the
domain-specific or the application-specific shell on the
language support may vary in the course of time. For
instance, there may be a shift in impact of a specific pattern
from the domain-specific shell towards a more general shell.
As a concrete example, we mention the role of the
communicator in the Model-View-Communication-Controller
pattern [42], which may lead to new language features in the
language shell or even the core shell, to express different
alternatives of communication between objects in a more
explicit way than it is supported by currently available
language features.

Summarizing, we see the following four main open issues in
the language region.

4.2 Model Constituents
The constituents of a concrete model (cf. Figure 2) reflect
the modeler's way of separating the various concerns seen
as relevant for the concrete situation to be modeled.
Consider the situation of an architect designing a prefab
house. Parts of the house are to be made in some factory,
and the parts have to be put together on the spot where the
final house has to be built. A part is a complete wall or floor
element, containing the (local) pipes and tubes for gas,
water, central heating, the electricity wiring and such things
as radiators, windows, doors. So in this case, the
architectural design of the house physically consists of the
drawings of the prefab parts. When a potential buyer of
such a house wants to see a drawing of the house, he
actually gets a series of interrelated drawings, one for each
floor. These drawing do not in the least reflect drawings of
the prefab parts the house is composed of, although the
floor representations are thoroughly consistent with these
parts. Moreover, if the potential buyer wants to be
completely informed about the central heating system, he
will also get a drawing on scale containing all heating-tubes,
radiators, the stove, and the thermostat. Also this drawing
does not in the least reflect drawings of the prefab parts,
nor does it reflect all information from the floor
representations. But again, there is full consistency with the
other representations.

Analogous to the prefab house, an object-oriented model
has many constituents, which are different in nature. First of
all, a model consists of the constituents it has been - really,
physically - made of: the classes, with their data, behavior,
functionality, communication, and of relationships as class
connectors. Also packages belong to the physically real
constituents of a model. These constituents exactly reflect
how the model has been constructed, similar to drawings of
the above prefab parts of the house. Second, a model also
has other representations. Such a representation is a
different form the model takes, when represented depending
on a particular use of the model one has in mind. Not the
model as it is, but as one can think of it, the model with its
representative constituents. Examples of such different
representations are views, subjects and patterns. They
themselves consist of the same type of constituents,
classes and relationships, as the model physically does, but
differently represented, similar to the drawings of the floors
versus drawings of the various prefab parts. Third, the
classes actually combine things that, unless on metalevel,
are not to be represented as classes and relationships
themselves. Examples are data, behavior, functionality,
communication. They are aspects that are bound together in
the various classes, similar to the above central heating
system. The aspects are so to say woven into the classes
[33].

Where there are so many different components in a model,
the real ones, the representative ones as views and
patterns, and the aspects, the interrelations between the
components have to be carefully watched over. There is

Open issues in the Language region:

� language architecture (core vs. profiles)

� hybrid notations (textual vs. graphical)

� completeness

� semantics

really much consistency to take care of. Important parts of
this consistency management issues have already been
studied, as, for instance, in the viewpoint approach [19],
where consistency between different views could be kept
by an explicit consistency management. A different
approach of an (automatic) integration of possibly
overlapping views or subjects into an overall model has
been discussed in the view-based development approach of
[16], or the subject-oriented design technique of [6].

The real model, the one with the real components, actually
describes its own architecture, although probably from a
logical point of view, and not so much from a hardware and
system software point of view. Therefore, further study of
the relation with architecture description languages (ADL)
seems promising in view of mutual usefulness of both
approaches for each other [13]. Architectural patterns may
turn out to be important, so the above consistency insights
could be relevant for this situation, too.

Patterns as a different kind of constituent of a model have
been studied e.g. in [23]. Similar to views, also patterns are
to be composed with other patterns. Pattern integration
should be such that mandatory or perhaps only desired or
optional consistency can be guaranteed.

A third but different type of model constituent is the aspect
or feature. Aspects or features are not classes, but types of
general characteristics or concerns for the model as a whole,
see e.g. [33, 46]. Examples for aspects are communication,
resource sharing, replication, distribution. Such an aspect
normally is entangled, intertwined with everything else in
the model. Small bits of the aspects can be found in many
different parts of the model. The parts are the classes, so
the classes bear small parts of the aspects. Further research
is required to shift the aspect-oriented from the
programming level to the modeling level. Here, it has to be
investigated which aspects can be specified separately and
what are the interrelations between different aspects or
features (see e.g. [2] for an investigation on feature
interactions).

Summarizing, we see the following open issues in the model
constituents region:

4.3 Model Composition
With so many model constituents around, one needs
flexibility in changing from a small number of constituents
to a large number and back, without straining the model
elements and expressiveness too much. This is known as
scalability. Scalability has direct consequences for reuse

and for change. For instance, extending a model or a small
part of it with some other model(´s part) that has new or
more sophisticated functionality, should be relatively easy
and also well understood.

We see scalability into two directions, horizontal and
vertical. Horizontal scalability consists of adding or
removing model parts as classes, packages, patterns, views
or aspects. Vertical scalability consists of refinement or its
reverse aggregation.

When, model parts are being put together in the horizontal
direction, one has to perform the actual integration of these
parts with the already present ones. Not only in a syntactic
sense, but also in a functional, semantic sense. This means
that we need composition techniques for the different types
of constituents. For instance, we need a better
understanding how to refine behavioral descriptions like
statechart-based ones. A discussion on two different types
of statechart inheritance together with concrete
construction rules can be found in [12].

Horizontal compositionality might result in the requirement
to treat all constituents of a model as a semantic unit with a
clear defined interface through which such a model part
looks like a class. In particular, this might mean to lift
packages from the syntactic level to the semantic level.

Scalability in the vertical direction is very often
modularization, resp. more concrete either refinement or
aggregation. In the case of refinement, an existing model
part changes its content into a new, more detailed content,
but from the outside it still looks as before. So the old part is
replaced by some more detailed part, for instance one class
is replaced by a whole group of cooperating classes. Such a
group then is known as a module. The module replaces the
old class, by representing itself to the rest of the model as if
it is that class. The other way round is the grouping of a set
of already existing model parts, e.g. classes, into something
new, the module. The module represents the set towards the
rest of the model. Quite often we want a module to look as
much as a class as possible. This is in line with the
aggregation concept, where a group of classes constitutes
the aggregation class. Adapting to the type level, the above
cited remark of Meyer now becomes: Classes - instead of
objects - are the only modules. It has to be investigated
how class-like descriptions of certain modules or packages
can be defined and eventually constructed, also with
respect to non-structural aspects as behavior, functionality
and communication.

Summarizing, we see the following open issues in the model
composition region:

Open issues in the Model Constituents region:

� modeling units and their interdependencies

� views, subjects

� aspects, features

� patterns, frameworks

Open issues in the Model Composition region:

� scalability

� horizontal / vertical composition techniques

4.4 Modeling Process (in-the-Small)
After having discussed constituents of object-oriented
models and requirements for having full scalability in a
model, we now discuss the process of developing such a
model. We see the following question to be crucial for the
development process: how to take care, from the beginning,
of the coordination between all constituents, such that the
scalability requirements are met? As a matter of fact, in
UML many diagrams exist that relate to this coordination:
use cases, sequence diagrams, collaboration diagrams, state
diagrams, activity diagrams, deployment diagrams. A use
case specifies one behavioral scenario which among other
things addresses coordination. So does a sequence or
collaboration diagram, it also specifies one behavioral
scenario, but this scenario concentrates much stronger on
the interaction and hence on the coordination between
objects involved. State diagrams are based on statecharts,
so they specify behavior in terms of separate sequential
parts, the separate state transition diagrams. The
coordination between these sequential parts is explicitly
indicated. Activity diagrams have features from control flow
diagrams as well as from Petri nets. So they specify
coordination, too. In combination with so-called swimlanes,
the specification moreover expresses between which
classes the coordination takes place. A deployment
diagram, among other things, specifies whether some
communication between its components exists, but it does
not express how the corresponding coordination is to
happen.

What is clearly lacking, is first the consistency between all
different coordination specifications, and second, a
technique or approach for finding some reasonable
coordination specification. In our opinion, an explicit
coordination model is needed as submodel of an object-
oriented model, together with an approach how to build
such a submodel and how to make and keep it consistent
with the whole model. It might be a good idea to extend the
well-known Model-View-Controller (MVC) pattern to a so-
called Model-View-Communication-Controller (MVCC)
pattern [42] (cf. Figure 4). Here, the often implicit
communication and coordination becomes explicit and has
to be handled by a separate component. This, is very much
in line with current developments in middleware software,
where e.g. CORBA or DCOM components provide explicit
support for the communication part within a software
system.

A different approach could be to see communication and its
coordination as so fundamental for behavior and
functionality modeling that the object-oriented modeling
language has to be extended or adapted with a separate
aspect for it (in addition to data, behavior and
functionality). The new aspect should be such that all
communication and coordination is covered, that the aspect
is integrated with the already present aspects as data,
behavior and functionality, and that the specification of the
aspect is sufficiently scalable. This is the approach taken in

SOCCA [15], where based on purely sequential state
transition diagrams, used for both the visible behaviors and
the hidden functionalities, new notions are defined for
specifying phases of behavior (temporary behavior
restrictions) and how to control these.

How to integrate new aspects, i.e., adding a new aspect to
an existing model in a well-structured manner, is an open
problem yet. Similar to the integration of the communication
aspect by some form of distribution over the classes, as it is
done in SOCCA [14], one can try to add a new aspect via
local arrangements in the classes. The multi-dimensional
approach of [45] might be of help here. It presents a
(generic) framework by regarding the whole software
development process as a path through a multi-dimensional
grid of aspects. Each node in the grid represents a
composition of aspects. A concrete form of this framework
might help to better understand the process of developing a
concrete model.

Summarizing, we see the following main open issues in the
modeling process (in-the-small) region:

4.5 Model Review
After, during or perhaps even before the actual
construction of the model, one certainly wants to evaluate
the quality of the model. In order to do this evaluation, one
at least needs full semantics of the modeling language.

Two types of model review can be distinguished. These are
model animation or simulation techniques on the one hand,
and analytical methods on the other hand.

As in the field of discrete event simulation, animation of
the model is a very quick and intuitively very convincing
way of telling both a designer and a user of the model

Open issues in the Modeling Process (in-the-Small)
region:

� consistency

� coordination and communication

Figure 4: Model-View-Communication-Controller Pattern

Controller View

Communication

 Model

whether the model indeed reflects what one thinks it should
do. In combination with extensive what-if facilities this
comes very close to testing the model.

Animation, being a discrete event simulation, is a form of
validation, as only some example behaviors, some example
functionalities and some example communications are being
imitated. It seems worthwhile to investigate under which
extra conditions the animation can be replaced by a so-
called analytical computation model. That means, one can
compute the behavior of the original model in a direct way,
instead of getting an estimation for it through simulation /
animation. Such computations are analogous to the various
computational analyses that can be performed in Petri nets.
The extra conditions may concern assumptions concerning
the duration times of behavioral and of functional steps, or
assumptions concerning the queuing mechanisms, or
assumptions concerning the composition of the model from
certain logical parts. In case of an analytical computation
model, we have model verification with respect to the
results computed. This can be viewed as a sound basis for
reasoning about the model.

Due to the still missing complete semantics definition of
object-oriented modeling languages, overall model checking
support is still missing, too. Nevertheless, first results can
be found in the literature, in particular, related to state
machine or state transition systems (e.g., [25, 28]). In our
opinion, this region in the landscape of object-oriented
modeling languages deserves and will receive much more
attention in the near future.

4.6 Embedding into the Development Process
In the above five regions, we can see some contours from
the umbrella software engineering process. Examples of
these contours are: designing a model, reviewing a model,
integrating whatever model part into the rest of the model.
Designing a model has to be understood in a broad sense,
covering the whole lifecycle of model engineering. This
means concretely that the modeling language and its use
have to be embedded in the software engineering lifecycle
process, covering all phases where some form of model
development is situated. Adopting for a moment the
waterfall view with respect to software engineering, we
speak about front-end embedding and of back-end
embedding of model design into the software lifecycle.

The front-end embedding addresses the transformation or
translation from any informal description of the problem
situation towards the object-oriented model. Often, an
informal description is written in natural language, but also
video or other images can serve as such. This form of
transformation occurs in the feasibility phase, in the

requirements engineering phase and in the design phase. It
is not very common to speak about reverse engineering in
the context of this transformation, but animation of an
object-oriented model, or of whatever part of it, falls in this
category: through animation an informal visualization is
presented of what the model or a part of it specifies. It is
even imaginable to reverse this form of reverse engineering.
First an animation of the model-to-be is developed. As soon
as every stakeholder is satisfied with it, the model can be
developed on the basis of the animations that actually play
the well-known role of simulation in information system
development.

Back-end embedding addresses the transformation from
object-oriented model towards program code, code
generation [17]. Here, it is has to be investigated, where
modeling stops and where programming starts. It has to be
understood, how much information, in particular concerning
functionality, has to still to be added to the program code. It
seems that the border between visual modeling and visual
programming will be diminished in the near future or will
even disappear.

Object-oriented modeling will become a solid basis for
round-trip engineering. When during the maintenance
phase some change is being proposed, this leads to the
situation where some newly developed model part has to be
integrated with an often large part of the original model.
Hence, the above discussed scalability as well as horizontal
and vertical composition techniques can be of great help
here. Again, animation as a kind of prototyping could be of
substantial help, too, in particular if the new scenario's can
be combined with the old scenario's.

All issues discussed above have to be incorporated into an
overall software development process model and have to
be supported by appropriate software tools. For instance,
the role of animation, prototyping and model review have to
be appropriately integrated with all other model
development tasks.

.

5. CONCLUSIONS
In this article, we have drawn the road map, i.e., the main
open issues in the field of object-oriented modeling to be
investigated within the next couple of years. As a base for
the presentation and future discussion, we introduced a
structured landscape consisting of six different regions.
They address all perspectives of object-oriented modeling,
i.e., the underlying language, the developed models, as well

Open issues in the Model Review region:

� animation / simulation techniques

� analytical techniques

Open issues in the Modeling Process (in-the-Large)
region:

� front-end / back-end transformations

� round-trip engineering

� process models

� support tools

as the development process. Within each region, we
identified concrete topics to be investigated and gave
references to some research results in order to illustrate
possible ways to find solutions.

The whole discussion is biased towards two software
engineering principles, which were identified in section 2 to
be the most crucial ones in the field of object-oriented
modeling. These are user-friendliness of the modeling
approach and separation of concerns. As object-oriented
modeling is central to the whole software development
process, a great variety of stakeholders are dealing with the
model and the underlying language. Thus, first an intuitive
and clear understanding of any model is an important
prerequisite. Second, due to the complexity of the models to
be developed, in particular horizontal and vertical
structuring techniques are desperately needed.

The Unified Modeling Language (UML), currently playing a
dominant role in the field, also influenced the presentation
and discussion within this article. The discussion on
forthcoming versions of the UML will be a major task in the
near future in the field of object-oriented modeling. It is
obvious that a convincing solution to all open issues
discussed above can only be reached if fundamental,
scientific research results will be combined in a synergetic
way with industrial requirements and restrictions.

6. REFERENCES
[1] M. Andries, G. Engels: A Hybrid Query Language for

the Extended Entity Relationship Model. Journal of
Visual Languages and Computing, 7(3), September
1996, 321-352.

[2] E. Astesiano, G. Reggio: A Discipline for Handling
Feature Interaction. In M. Broy, B. Rumpe (eds.):
RTSE'97 - Workshop on "Requirements Targeting
Software and Systems Engineering", Technical Report
TUM-I9807, April 1998, Technical University of
Munich, Germany, 1 - 22.

[3] G. Booch (guest editor): UML in Action. CACM, Oct.
1999, 42(10).

[4] G. Booch, J. Rumbaugh, I. Jacobson: The Unified
Modeling Language User Guide. Addison-Wesley,
Reading, MA, 1999.

[5] P. Chen: The Entity-Relationship Model - Toward a
Unified View of Data. ACM Transactions on Database
Systems, 1(1), 1976, 9-36.

[6] S. Clarke, W. Harrison, H. Ossher, P. Tarr: Subject-
Oriented Design: Towards Improved Alignment of
Requirements, Design and Code. In Proceedings of the
OOPSLA '99, Denver, CO, USA, Nov. 1 - 5, 1999, ACM,
New York, 1999, 325 - 339.

[7] J. Conallen: Modeling Web Application Architectures
with UML, CACM, October 1999, 42(10), 63 -70.

[8] St. Cook, A. Kleppe, R. Mitchell, J. Warmer, A. Wills:
Defining the Context of OCL Expressions. In [22], 372-
383.

[9] St. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer,
A. Wills: Prefaces: Defining UML Family Members (in
preparation).

[10] B. P. Douglas: Doing Hard Time - Developing Real-
Time Systems with UML, Objects, Frameworks, and
Patterns, Addison-Wesley, 1999.

[11] D. D'Souza, A. Wills: Objects, Components, and
Frameworks with UML - the Catalysis Approach.
Addison-Wesley, 1998.

[12] J. Ebert, G. Engels: Structural and Behavioural Views on
OMT-Classes. In E. Bertino, S. Urban (eds.):
Proceedings International Symposium on Object-
Oriented Methodologies and Systems (ISOOMS),
Palermo, Italy, September 21-22, 1994, LNCS 858,
Springer, Berlin 1994, 142-157.

[13] A. Egyed, N. Medvidovic: Extending Architectural
Representation in UML with View Integration. In [22],
2-16.

[14] G. Engels, L.P.J. Groenewegen: SOCCA: Specifications
of Coordinated and Cooperative Activities. In A.
Finkelstein, J. Kramer, B.A. Nuseibeh (eds.): Software
Process Modelling and Technology, Research Studies
Press, Taunton 1994, 71-102.

[15] G. Engels, L.P.J. Groenewegen, G. Kappel: Object-
Oriented Specification of Coordinated Collaboration. In
N. Terashima, Ed. Altman: Proc. IFIP World Conference
on IT Tools, 2-6 September 1996, Canberra, Australia.
Chapman & Hall, London 1996, 437-449.

[16] G. Engels, R. Heckel, G. Taentzer, H. Ehrig: A Combined
Reference Model- and View-Based Approach to
System Specification. International Journal on Software
Engineering and Knowledge Engineering, Vol. 7, No. 4,
December 1997, 457-477.

[17] G. Engels, R. Hücking, St. Sauer, A. Wagner: UML
Collaboration Diagrams and Their Transformation to
Java. In [22], 473-484.

[18] A. Evans, St. Kent: Core Meta-Modelling Semantics of
UML: The pUML Approach. In [22], 140-155.

[19] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein,
M. Goedicke: Viewpoints: a Framework for Integrating
Multiple Perspectives in System Development.
International Journal of Software Engineering and
Knowledge Engineering, 2(1), March 1992, 31 - 57.

[20] D. Firesmith, B. Henderson-Sellers, I. Graham: OPEN
Modeling Language (OML) Reference Manual,
Cambridge University Press, New York, 1998.

[21] T. Fischer, J. Niere, L. Torunski, A. Zündorf: Story
Diagrams: A New Graph Grammar Language based on
the Unified Modeling Language and Java. In H. Ehrig,

G. Engels, H.-J. Kreowski, G. Rozenberg (eds.): Proc. of
the 6th Intern. Workshop on Theory and Application of
Graph Transformation. Paderborn, November 1998,
LNCS 1764, Springer , Berlin, 2000.

[22] R. France, B. Rumpe (eds.): <<UML>>'99 - The Unified
Modeling Language, Beyond the Standard. Second
Intern. Conference. Fort Collins, CO, October 28-30,
1999. LNCS 1723, Springer, 1999.

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns. Addison-Wesley, Reading, MA, 1995.

[24] C. Ghezzi, M. Jazayeri, D. Mandrioli: Fundamentals of
Software Engineering. Prentice-Hall Intern, 1991.

[25] D. Giannakopoulou, J. Magee, J. Kramer: Checking
Progress with Action Priority: Is it Fair? In O.
Nierstrasz, M. Lemoine (eds.): Proc. ESEC/FSE '99,
Toulouse, France, Sept. 1999, LNCS 1687, Springer,
Berlin, 1999, 511-527.

[26] D. Harel: Statecharts: A Visual Formalism for Complex
Systems. Science of Comp. Prog., 8 (July 1987), 231-274.

[27] K. M. van Hee: Information Systems Engineering: A
Formal Approach. Cambridge Univ. Press, Cambridge,
UK, 1994.

[28] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw: Automated
Consistency Checking of Requirements Specifications.
In ACM TOSEM, 5(3), July 1996, 231-261.

[29] ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC). ITU-TS, Geneva, 1996.

[30] I. Jacobson, G. Booch, J. Rumbaugh: The Unified
Software Development Process, Addison-Wesley,
Reading, 1999.

[31] R. Jungclaus, G. Saake, T. Hartmann, C. Sernadas:
TROLL - A Language for Object-Oriented Specification
of Information Systems. ACM Trans. on Information
Systems, 14(2), April 1996, 175-211.

[32] St. Kent, J. Howse: Mixing Visual and Textual
Constraint Languages. In [22], 384 - 398.

[33] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, J. Irwin: Aspect-Oriented
Programming. In Proceedings of ECOOP'97, LNCS 1241,
Springer, 1997.

[34] C. Kobryn: UML 2001: A Standardization Odyssey.
CACM, 42(10), October 1999, 29-37.

[35] G. Larsen: Designing Component-Based Frameworks
using Patterns in the UML. CACM, 42(10), October
1999, 38-45.

[36] B. Meyer: Object-Oriented Software Construction,
Prentice Hall, 1997.

[37] Object Management Group. OMG Unified Modeling
Language Specification, Version 1.3. June 1999.

[38] R. F. Paige, J. S. Ostroff: A Comparison of the Business
Object Notation and the Unified Modeling Language.
In [22], 67-82.

[39] M. Schrefl, G. Kappel: Cooperation Contracts. In T. J.
Theorey (ed.): Proc. of the 10th Intern. Conf. on the ER
Approach, October 1991, 285-307.

[40] B. Selic, G. Gullekson, P. Ward: Real-Time Object-
Oriented Modeling. Wiley, 1994.

[41] A. Sernadas, C. Sernadas, H.-D. Ehrich: Object-Oriented
Specification of Databases: An Algebraic Approach. In
P. M. Stoecker, W. Kent (eds.): Proc. 13th Intern. Conf.
on Very Large Databases VLDB'87, VLDB End. Press,
Saratoga (CA), 1987, 107-116.

[42] St. Sauer, G. Engels: MVC-Based Modeling Support for
Embedded Real-Time Systems. In P. Hofmann, A.
Schürr (eds.): OMER Workshop Proceedings, 28-29
May, 1999, Herrsching (Germany), University of the
German Federal Armed Forces, Munich, Technical
Report 1999-01, May 1999, 11-14.

[43] St. Sauer, G. Engels: Extending UML for Modeling of
Multimedia Applications. In M. Hirakawa, P. Mussio
(eds.): Proc. 1999 IEEE Symposium on Visual
Languages, September 13-16, 1999, Tokyo, Japan. IEEE
Computer Society 1999, 80-87.

[44] J. Warmer, A. Kleppe: The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley,
Reading, MA, 1998.

[45] A. Zamperoni: GRIDS - GRaph-Based Integrated
Development of Software: Integrating Different
Perspectives of Software Engineering. In Proc. of the
18th Intern. Conf. on Software Engineering, March
1996, Berlin, Germany, IEEE Computer Society Press,
1996, 48-59.

[46] P. Zave: Feature Interactions and Formal Specifications
in Telecommunications. Computer, 26(8), 1993, 20-29.

7. LINKS
www.omg.org - OMG home page

www.cs.york.ac.uk/puml - precise UML group

www.rational.com/uml/index.jtmpl - UML literature

uml.shl.com - UML RTF home page

