
Mother: Making the Performance of Real-Time Computer
Graphics Accessible to Non-programmers

Ilias Bergström

University College London

Institute of Ophthalmology

11-43 Bath Street

London EC1V 9EL

i.bergstrom@ucl.ac.uk

Beau Lotto

University College London

Institute of Ophthalmology

11-43 Bath Street

London EC1V 9EL

lotto@ucl.ac.uk

Abstract

Here we describe a programme that will enable the performance of advanced real-time
computer graphics by non-programmers through flexible modules that are easily exchanged

and managed.

Keywords

New media art, VJing, Processing, Real-time performance, colour-organ

Introduction
From the colour organs of past centuries, to today’s VJing and new media art performances,

artists and scientists have shown perpetual interest in the live performance of visual imagery.

The limited aesthetic flexibility permitted by existing tools however has meant that artists

striving to differentiate their work have most often been the inventors and creators of the
tools they use. To address this obstacle, we have developed a set of tools, that make use of

and extend the popular Processing [1] open-source multimedia programming environment.

Together they will enable artists without the skills of computer programming to significantly
influence the content of their visual performance, while also keeping the programming of new

graphics algorithms accessible to those seeking greater creative freedom.

Background
The first known machine for the real time performance of colour ‘graphics’ was Louis-Bertrand

Castel’s “Clavecin oculaire” (1734) [2]. Many machines have since followed, made to produce
either compositions of animated colours, dubbed colour music, or moving compositions of

colour and form, a new art-form dubbed “Lumia” by Thomas Wilfred, the developer of the

“Clavilux” organ (1922) [2]. In modern times, analogue video synthesizers, laser shows and
more recently computer graphics have all been employed for the real-time performance of

moving imagery. For instance, at live music concerts and at clubs with music played by a DJ,

there are often live graphics performed by a VJ (for Visual Jockey), who mixes pre-recorded

video clips together, while altering the playback parameters of the individual clips, as well as
processing these clips using real-time video effects. A further advance has been the recent

development of computer programming environments, such as Processing and Cycling74’s
Max/MSP/Jitter combination, that allow the description and performance of real-time

procedural graphics by non-expert programmers, and as such their use has begun making its

way out of the avant-garde and into VJ sets, and ‘new media art’ performances.

Existing limitations
In the practice of VJing, the performer has only coarse-grained control over his/her content..

Although what video is played at a particular instant in time can be decided on-line during the
performance, as can the playback speed and direction, as well as what video effects are

applied, the performer has no significant influence over the content of the video itself. There
are variations to described practices, such as using live video sources instead of pre-recorded

video, the principle however still remains the same.

While previously mentioned multimedia programming environments enable performers to

overcome this limitation by allowing them to control the synthesis of imagery in real-time,
these environments have other limitations of their own. For instance, while they are intended

to be accessible to non-expert programmers, they require a great deal of time to learn how to
use effectively. Furthermore, the created program cannot easily be used by other performers

for achieving their individual aesthetic goals without modifying it, which requires significant

programming knowledge.

Proposed system
The system we propose here overcomes these limitations, through an integration of the

principles of using VJ-software, and of working with mentioned multimedia programming
environments.

Although the principle of mixing multiple layers of moving graphics, as in VJing, is retained,
here these graphics are not from pre-rendered video clips, but are the output of real-time

visual synthesizers (‘synths’), running in parallel within the main host application. Each synth
is a program that renders a particular visual effect, the control parameters of which are all

accessible on-line during a performance, so that the appearance of the visual is animated over
time. ‘Synths’ can be created as Processing ‘Sketches’ [1], using a Processing library provided

that enables the sketch to work within our host application. Users can either create their own

synths, use synths from a collection provided with the host, or from other users.

The system therefore comprises of two modules: the main host application and the Processing
library. The host application manages the execution of the multiple synths, mixes their

individual visual output into the final output, and handles the forwarding of control information
to individual synths. The Processing library resides within each synth, and handles its

integration with the host. Besides encapsulating the boilerplate functionality for allowing this

integration, it also provides an easy mechanism for programming new synths.

Three different categories of synths are envisioned: (i) full-frame synths, covering the whole
screen area, thus being most suitable for use as the background layer, (ii) synths partially

covering the screen, leaving a transparent background, and (iii) video processing synths, that
apply 2d effects to real-time video streams such as the output of other visual synths, as are

currently used in VJing software. At the time of writing, the first two categories have been

implemented. The third is under development, and will ideally support the incorporation of
FreeFrame effects, an already well established standard for video effect plugins [3].

The communication of control data to the host and to individual synths is managed solely

through the use of Open Sound Control [4], a protocol for communicating between computers,
sound synthesizers and other multimedia devices. Currently there are many systems that

allow you to relatively easily define a user interface capable of transmitting OSC control data,

both in the form of hardware controllers and of software applications [4]. The choice to
completely separate the synth host from any user interface was made because there currently

is no established generally applicable user interface paradigm for controlling the performance
of real-time computer graphics. Users are instead encouraged to adapt or create their own

user interface, depending on what best suits their particular context of use.

Discussion
Here we describe the current state of a system that will facilitate the performance of advanced

real-time computer graphics by non-programmers, by encapsulating the programming

complexity in flexible modules that are easily exchanged and managed. Performers will be able
to pick visual synthesizer modules from an anticipated growing number of freely available

ones, provided a community has grown around the use of the system. Creating new visual
synthesizer modules will be as easy as creating a Processing ‘sketch’, which has been proven

to be accessible to artists not trained in software engineering. Finally, the host and library will

both be released as free open source software, thus making them part of the larger context of

such software, which includes Processing. This move will hopefully encourage users to share

the visual synthesizer modules they have created, in the same manner as the Processing
community already practices with ‘sketches’.

References
[1] C. Reas and B. Fry, (2007) Processing: A Programming Handbook for Visual Designers and
Artists. Publisher: The MIT Press.

[2] K. Peacock, (1988) Instruments to Perform Color-Music: Two Centuries of Technological

Experimentation. Leonardo 21 , pp. 397-406.

[3] FreeFrame, http://freeframe.sourceforge.net/. Last checked June, 17, 2008.

[4] opensoundcontrol.org, http://opensoundcontrol.org/. Last checked June, 17, 2008.

