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Abstract—Portable devices have become sufficiently powerful
that it is easy to create, disseminate, and access digital content
using them. The volume of such content is growing rapidly and,
from the perspective of each user, relevance and quality are key.
In the absence of a central authority, distributed trust models
may be intended as a mechanism for filtering information by
keeping track of who disseminates relevant content and who
does not. This mechanism is capable of doing so across various
contexts (content categories). However, a problem with such an
approach is that, as the number of content categories increases,
so does the sparseness of the trust relation; thus the setting of
initial trust values in the absence of direct experience becomes
problematic. The most sophisticated of the current solutions
employ pre-defined context ontologies, using which initial trust
in a given context is set based on that already held in similar
contexts. However, universally accepted (and time invariant)
ontologies are rarely found in practice. For this reason, we
propose a mechanism called TRULLO (TRUst bootstrapping
by Latently Lifting cOntext) that assigns initial trust values
by exploiting statistical properties of the ratings of its user’s
past experiences. We evaluate the effectiveness of TRULLO by
simulating its use on ubiquitous devices in an informal antique
market setting. We also evaluate the computational cost of a
J2ME implementation of TRULLO on a standard mobile phone.

I. INTRODUCTION

Using their portable devices, users may produce, dissemi-
nate, and access digital content (e.g., news, photos, videos).
In so doing, users may be engaged in everything from urban
planning to creative expression [1], [2].

Digital content may span several categories (e.g., news
may be about ‘council politics’ or about ‘local events’), and
only part of it is of high quality (defined subjectively - as
interesting, relevant, accurate, etc.). To benefit from a wide
variety of content, users should be able preferentially to select
that fraction of content that is in their categories of interest
and that is of high quality. Since the calculation of quality is
subjective, and since a centralized approach may not scale with
growing number of users, users should do so in a decentralized
setting. As a consequence, each user may run a distributed trust
model [3], [4] - a software agent that keeps track of who has
disseminated quality content and who has not. Given that there
are a myriad of (portable) devices participating in the exchange
of content in a broad variety of categories, one problem arises.
Before trust models can be used effectively, a critical mass of
reputation information must be collected; the requisite quantity
of which dramatically increases with the number of producers

and of content categories (contexts1). That problem may be
alleviated by effectively setting initial trust values.

Current research literature suggests that user A may assign
its initial trust in user B:
(1) as a constant representing A’s initial disposition to trust [6];
(2) based on other users’ recommendations about B [5];
(3) close to A’s trust in B in a similar and known context [7].

We propose a solution complementary to those existing
approaches and will then discuss which approach to use in
which case (Section V). In so doing, we make the following
main contributions:
• Designing a novel mechanism, named TRULLO (TRUst

bootstrapping by Latently Lifting cOntext), that, in con-
trast to existing approaches (Section VI), neither fixes
arbitrary initial trust values, nor relies on collecting
recommendations, nor assumes a universally accepted
ontology. Instead, it statistically analyzes the ratings of
its user’s past experiences to bootstrap unknown trust
values. Section III-A introduces the key ideas on how
TRULLO bootstraps trust and Section III-B then proposes
an algorithm implementing those ideas.

• Evaluating the effectiveness of TRULLO at predicting
trust (Section IV-A) by simulating its use on ubiquitous
devices in informal antique markets (described in the next
section).

• Evaluating the computational cost of a J2ME imple-
mentation of TRULLO on a Nokia 3230 mobile (Sec-
tion IV-B).

II. RUNNING EXAMPLE

Throughout the paper, we consider an application of
portable devices in informal antique markets. Given that those
markets are huge, one major problem is that visitors cannot see
prices of everything in which they are interested. To solve that
problem, stall holders and visitors could use their ubiquitous
devices, such as their mobile phones and PDAs. Stall holders
may, for example, disseminate ads of the items they are selling
through their portable devices, and visitors may collect those
ads upon which they may compare prices and consequently
decide which stalls to visit. Of course, visitors would have
time to read only a subset of the ads. As such, they would
wish to receive ads that are in the categories (contexts) of

1In the literature of trust management, content categories are called contexts
(e.g., see [5])



their interest (e.g., ads about cabinets, chairs, and desks) and
that come from trustworthy sellers (e.g., sellers who are known
to inflate prices, or to spam visitors with irrelevant ads, may
be deemed untrustworthy).

We consider that a visitor selects trustworthy sellers as
follows:
(1) The visitor receives ads from sellers on her portable

device.
(2) Ads are rated. The visitor does not have explicitly to rate

ads: monitoring the time the visitor spent reading an ad, or
being physically located in front of the stall that is the subject
of an ad, might serve as surrogates for rating.
(3) On input of ads’ ratings, the trust model updates its trust

values for sellers and arranges those values across contexts.
By context, we simply mean a textual description of an ad’s
category (e.g., ‘Roman coins’).
(4) Based on the resulting trust values across contexts, an

instance of TRULLO running on the device extracts statisti-
cally relevant information (trust features) through a technique
called Singular Value Decomposition [8] (to which we will
refer as SVD and ‘the decomposition’ interchangeably). By
combing those features, TRULLO then bootstraps unknown
trust values. The device then select trustworthy sellers and
consequently shows its user only those ads she would find
relevant.

This work focuses on how TRULLO extracts trust features
upon which it then bootstraps unknown trust values. Before
describing how TRULLO does so, we spell out our assump-
tions:
• A mechanism to distinguish one context from another

is given. This mechanism does not need to describe
the relationships among all possible contexts (as does
an ontology tree); rather, it simply needs to distin-
guish contexts. An example of such a mechanism is
a directed graph, whose nodes are contexts and whose
edges are change conditions [9], [10]. A qualitative
context description (e.g., ‘Roman coins’) may be then
mapped into a node of the graph by considering that
change conditions specify whether certain keywords are
present in the description. This is a particular example
of how to distinguish contexts, but each device that runs
TRULLO is free to choose any other. This is an advantage
of TRULLO’s bootstrapping compared to bootstrapping
from recommendations: while the latter requires that
all recommenders and recipients of recommendations
differentiate contexts in the same way, TRULLO simply
expects each device to have its own way of doing so.

• TRULLO is given a way to distinguish one seller from
another. That is, it must be able to uniquely identify
sellers (e.g., by binding together a unique public key with
each seller). If identities are not unique, TRULLO may
suffer from sybil attacks [11], in which a malicious seller
takes on multiple identities and pretends to be multiple,
distinct sellers. In the absence of a central authority,
TRULLO may statistically guarantee seller-identity bind-
ings by using a mechanism similar to SybilGuard [12].

Fig. 1. Singular value decomposition (SVD). On a visitor’s device, TRULLO
gathers known trust values in a seller-by-context matrix D, upon which it
applies the decomposition. Based on the three resulting matrices, it then
reconstructs the trust value to be bootstrapped. The resulting matrices are:
seller-by-feature matrix E (trust in sellers across features), diagonal feature
matrix F (feature contribution to trust assessment), and transposed context-
by-feature matrix GT (feature relevance across contexts). To ease illustration
in Section III-B, some elements are in bold or underlined.

III. TRULLO BOOTSTRAPPING MODEL

Based on those assumptions, to bootstrap unknown trust
values, TRULLO applies the decomposition. We consider the
rationale for using the decomposition first (Section III-A), and
then look at how we will apply it to the problem at hand
(Section III-B).

A. Singular Value Decomposition

Consider a buyer (Alice) and its (ns x nc) trust value matrix
D in which ns rows represent the sellers from whom Alice
has previously received ads in nc contexts. For example, each
element Diy represents Alice’s trust value in Bob (the ith

seller) for sending ads about ‘Roman coins’ (the yth context).
Applying SVD on the matrix D means decomposing it into
three other matrices (see Figure 1):

Dns×nc = Ens×nf
· Fnf×nf

·GT
nf×nc

,

where:
• Each E’s ith row represents a set of Alice’s trust values in

the ith seller across features - for example, Eik represents
Alice’s trust value in Bob (the ith seller) in the kth

feature.
• F ’s diagonal contains all features’ contributions to trust

assessment arranged in descending order2 - for example,
Fkk expresses the extent to which the kth feature impacts
on Alice’s assessment of trust.

• Each GT ’s kth row reflects the relevances of the kth

feature across contexts - for example, GT
ky represents the

2By definition, the number of feature is nf = min{ns, nc} [8]; however,
in most applications ns > nc and thus nf = nc.
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relevance of the kth feature in the yth context ‘Roman
coins’.

Assume, for the sake of argument, that we do not know the
trust value for the ith seller in the yth context. From the three
decomposed matrices, we may initially estimate that value
as the weighted combination of trust values in the ith seller
across all features. For each kth feature, the weighting factors
are two: the feature’s relevance in the yth context (GT

ky),
and the feature’s influence on trust assessments (Fkk). For
example, Alice’s initial trust value in Bob for sending ads of
‘Roman coins’ equals the weighted sum of Alice’s trust values
in Bob in all features. Each feature is weighted according to
its relevance in the context ‘Roman coins’ and to its general
influence when assessing trust. Importantly, we do not need
to explicitly define features: from trust values, the decompo-
sition extracts statistically relevant information (features) and
assigns, to each of the features, a number corresponding to
its statistical relevance. TRULLO then latently (no context
ontology required) bootstraps trust.

B. Bootstrapping Steps of TRULLO
Knowing how the decomposition can be applied to re-

construct unknown trust values, we are now ready to devise
the bootstrapping steps of TRULLO. To do so, we consider
the case in which TRULLO running on A’s device has to
bootstrap a trust value t for B in context cx (‘Roman coins’).
To bootstrap t, TRULLO carries out the following steps:

Step 1. Determine the contexts in which A has previously
received ads from B. For example, consider a situa-
tion in which those contexts are cw, cy , and cz .

Step 2. Determine the sellers from whom A has received
ads in the previously identified contexts plus the
bootstrapping one (i.e., in cw, cx, cy , and cz). For
example, those sellers may be C, D, and E. Overall,
TRULLO considers ns sellers in nc contexts. In this
example, ns = nc = 4; in general, ns 6= nc. In the
extreme case of TRULLO having limited information
(i.e., either ns or nc equals 1), TRULLO bootstraps
t depending on the following cases:

1) ns = 1 and nc = 1 (A has received no
ad - TRULLO has just been installed on A).
TRULLO has no information, but has at least
one default recommender: its user. So TRULLO
bootstraps t according to its user’s risk attitude,
which existing mechanisms (e.g., [13]) may
elicit.

2) ns = 1 and nc > 1 (A has received ads
only from B and has done so in nc contexts).
TRULLO has to formulate a hypothesis of
“how trustworthy B is” in a new context. It
does so by setting t as the median of its known
trust values in B. We choose the median instead
of, for example, the mean because the median
gives less weight to outliers [14].

3) ns > 1 and nc = 1 (A has received ads from
ns sellers in the bootstrapping context, but not

from B). TRULLO bootstraps t based on social
investigations into how humans set initial trust
in the real world. In the most-cited model of
generalized trust by Hardin [15], initial trust is
based on trusting disposition, which, in turn,
is based on accumulated experiences within
a particular context. In this vein, TRULLO
bootstraps t as the median of the trust values
for the sellers known in the bootstrapping con-
text, which may be interpreted as the ‘typical
behavior’ for sellers in that context.

In the above cases (very limited information), a
simple median may appear to be a reasonable choice.
However, in the presence of enough information
(ns > 1 and nc > 1), Section IV-A3 on “Simulation
Results” demonstrates that the results obtained by
extracting features are by far more accurate than
simply using the median (even for small ns and nc).
The next steps detail how TRULLO extract those
features.

Step 3. Populate a matrix Dns×nc . In our example, this
matrix contains Alice’s trust values in the four sellers
in all contexts. D is, however, incomplete - A’s trust
for B in cx is missing. As SVD does not compute
on incomplete matrices, we insert the row’s average
to fill the gap. Given that the row’s average is an
arbitrary value, step 6 will not use its decomposition,
as Troyanskaya et al. [16] suggested. For example,
in Figure 1, TRULLO populates D and assigns the
row’s average 0.71 to the the value to be bootstrapped
(underlined).

Step 4. Apply SVD on D thus obtaining D = E · F ·GT

(as Figure 1 shows).
Step 5. From the three resulting matrices, extract the el-

ements Fkk and GT
kj , ∀k ∈ [1,m] and j ∈ [1, nc],

where: Fkk is the kth feature’s influence on trust
assessment; GT

kj is the kth feature’s relevance in
the jth context; and m is the number of relevant
features3. In Figure 1, being m = 3, TRULLO
extracts the elements in bold from F and GT , and
also those underlined from the latter.

Step 6. For each lth context in which A has received
ads from B (in our case, l ∈ {w, y, z}), regress
A’s trust in B (in the ith seller) in the lth con-
text against the relevances in that context of all
m features: Dil = b1F11G

T
1l + . . . + bmFmmGT

ml.
As we neither regress Dix nor consider any feature
in the bootstrapping context (GT ’s column corre-
sponding to cx), the row’s average in step 3 has
little influence in the regression. That regression then
results in m correlation coefficients {b1, . . . , bm}.
For example, in Figure 1, TRULLO regresses the

3The number of features that the decomposition extracts from a matrix
(ns × nc) is min{ns, nc}. The number of contexts A knows is (nc − 1).
Therefore, the number m of relevant features is min{ns, nc, (nc−1)}, i.e.,
min{ns, (nc − 1)}.
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elements in bold of D against those of F and GT ,
and obtains the following correlation coefficients:
{0.5886,−0.4578, 0.5734}.

Step 7. Having the correlation coefficients, the elements
in bold of F , and those underlined of GT , finally
compute t = Dix = b1F11G

T
1x + . . .+ bmFmmGT

mx.
In words, Alice’s trust in B in context cx equals the
weighted combination of Alice’s trust values in B
across features (b1, . . . , bk, . . . , bm). The weighting
factors for each kth feature are the feature’s influence
on trust assessment (Fkk) and the feature’s relevance
in the xth context (GT

kx). In the example of Figure 1,
TRULLO would set t to 0.8037.

That concludes the description of the bootstrapping steps.
We now turn to evaluating TRULLO.

IV. EVALUATION

We are concerned with effectiveness of TRULLO at pre-
dicting trust in novel contexts (Section IV-A) and the added
computational cost it entails on a mobile phone (Section IV-B).

A. Effectiveness of TRULLO

To quantify bootstrapping effectiveness, we need an
appropriate metric. To choose this metric, consider the
visitors’ goal in bootstrapping trust: accurately to predict
sellers’ trustworthiness in new contexts, thereby relying only
on those trustworthy. In meeting this goal, we are concerned
with one measure of effectiveness: the bootstrapping visitor’s
utility, which increases whenever the visitor gets the desired
resource (e.g., quality ads) and decreases otherwise.

1) Simulation Setup: In advance of carrying out controlled
experiments in a real antique market, it is necessary for
us to simulate the system of visitors and sellers. In doing
this, however, we seek to ground as much of the necessary
behavioral modeling on reality as possible. We refer both to
the antique sections of eBay and Amazon and to a study of
emerging behavior in electronic bidding by Yang et al. [17],
specifically to model the distributions of visitors’ interests
and the production of sellers’ ads across contexts. Naturally,
there are likely to be changes in a real ubiquitous deployment,
but our modeling affords a reasonable expectation of reality.
In particular, given the inherent property of publishing ads
(known as “preferential attachment” and discussed later),
we expect that visitors and sellers distribute across contexts
according to a Zipf-like distribution (few contexts have most
sellers and visitors, and most contexts, being specialized, have
few).

While we shall give the full details next, at a high level, the
system we simulate behaves as follows:

• We define a set of possible contexts.
• For each seller in the simulation, a subset of the contexts

is allocated to that seller so that the overall distribution
of sellers across contexts is Zipf.

Fig. 2. Ontology of reference. We evaluate TRULLO by simulating its use
on ubiquitous devices in antique markets. The simulation models the number
of contexts and their relationships with the above ontology. This reflects a
typical ontology of the antique sections on eBay and Amazon.

• Likewise, for each visitor, a subset of the contexts are
allocated to that visitor so that the overall distribution of
visitors is Zipf.

• Each seller is deemed to be an expert in one context,
but it also publishes ads in its other contexts, with an
increasing likelihood of inaccuracy as the contexts of its
ads “move away” from its area of expertise. This models
sellers being not equally expert in all contexts.

• Visitors rate the ads based on their accuracy and conse-
quently update their trust in sellers4.

• In their contexts of interest, visitors select new sellers
by bootstrapping trust with TRULLO, and calculate the
utility of the ads provided by the selected sellers.

• To measure TRULLO’s effectiveness, we compare the
utility values so obtained against those obtained by other
literature techniques.

Based on these points (detailed next), we will run sev-
eral simulations (Section IV-A2) and report the results (Sec-
tion IV-A3).

Defining contexts. In general, when users define which
contexts exist and the relationships among them, they define
ontologies. For example, they may consider ‘antique coins’,
‘Roman coins’, and ‘Greek coins’ as possible contexts, and
may then define relationships among those contexts by log-
ically arranging them in a tree [7] or a graph [9], in which
‘antique coins’ (parent context) originates ‘Roman coins’ and
‘Greek coins’ (child contexts). In real-life, each seller or visitor
has its own implicit ontology (representing what it knows)
upon which it accordingly acts (sends or rates ads).

Although we focus on evaluating the effectiveness of
TRULLO at predicting trust without an ontology, it is nec-
essary for us to craft one for the purposes of simulation.
This ontology is used to model the characteristics of antique
markets (i.e., number of contexts, and how visitors and sellers
distribute across them), but not to bootstrap trust. Looking at
both Amazon and eBay, antique ontologies are flat, i.e., they
have few levels and most of the nodes lie at lower levels. We
hence consider an ontology of 40 contexts: 1 root, 8 children,
each of which has 4 grandchildren (Figure 2).

Contexts in which sellers send ads and in which visitors
show interest.

Real world observation. We have ordered the 42 lowest
categories in the eBay antique section by the number of items
on sale and have then plotted the result in Figure 3: a Zipf
distribution best approximates the result; this is in line with

4Based on the ads that sellers disseminate in a context, visitors subjectively
decide whether sellers are expert in that context.
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Fig. 3. Popularity of antique categories in eBay. The categories (contexts)
are ranked by the number of antiques on sale. The resulting popularity follows
a Zipf distribution.

literature expectation. Zipf-like distributions are rooted in the
dynamics of sending ads: the more ads a seller sends up to a
certain moment, the more likely it is that the seller will send
other ads in the future. This, which is a form of preferential
attachment, is known to lead to power-law distributions, as
shown in economics and complex networks [18]. Moreover,
Yang et al. [17] show that most of the emerging behaviors in
the bidding process on both eBay and auction.co.kr (eBay’s
Korean partner) also follow a power-law distribution.

Model. We assign to each context in the ontology of refer-
ence a number of visitors and sellers such that the popularity
of each context (ranked by the number of visitors and sellers)
follows a Zipf distribution. While there is good reason to
suppose that the distributions of sellers to contexts, and visitors
to contexts, are all Zipf-like (power-law with parameter close
to unity), there is no real reason to suppose that they follow the
‘strict’ Zipf distribution (power-law with unitary parameter).
However, slightly changing such a parameter (1±0.2) demon-
strated little effect on our simulation results; we thus report
results for a unitary parameter. Overall, the consequence of our
modeling is that most visitors and sellers are associated with
a few (popular) contexts and that most ads will therefore be
created for those contexts. We then consider that each seller
is expert in one of the contexts with which it is associated
(this context being chosen uniformly at random). Being expert
in a context allows sellers to be able to produce highly-
relevant ads in that context. However, to account for real-life
unpredictability in the behavior of sellers, we allow sellers
to randomly change their expertise with a probability p (see
Section IV-A3).

Visitors rate ads.
Consideration. Visitors are unaware of the area of expertise

of each seller. They simply obtain ads purporting to be within
a particular context but, in reality, being of variable quality
depending on the distance between the area of expertise of
the seller and the context of the ad. Intuitively, the closer an
ad to its seller’s expertise, the more accurate and thus well-
received the ad. This accounts for sellers not being equally
expert in all contexts.

Model. Whenever it receives an ad, a visitor rates it as
follows: (ad’s relevance)= w − dist(ca, cs), where ca is the
ad’s context, cs is the seller’s context of expertise, and w is

the maximum contextual distance (in our ontology w = 4).
In words, the closer the ad’s context to the seller’s expertise,
the higher the ad’s relevance. In particular, as the distance be-
tween the two contexts increases, the relevance proportionally
decreases from a maximum w (ca and cs are the same) to a
minimum 0 (ca and cs are farthest). We compute the distance
between ca and cs as the minimum number of edges between
the two contexts. Of course, other measures of contextual
distance might be defined. Indeed, we have also used a more
complex distance function, whereby siblings of lower levels
are considered closer than siblings at higher levels. This did
not lead to statistically significant results.

Visitors update their trust. Upon rating seller B’s ads,
A’s trust model updates its trust in B. To model this, it was
necessary to integrate TRULLO with an available distributed
trust model, and we elected to use B-trust [19], our Bayesian
trust model for ubiquitous devices. The advantage of this
model is that it formally updates trust according to Bayes’
theorem on input of discrete ratings (not necessarily binary),
and, having being designed for ubiquitous devices, it does
so relying on a small data structure. For further details of
B-trust, please refer to [19].

2) Simulation Execution: We divide the simulation execu-
tion into two phases: visitors build initial knowledge upon
which they then bootstrap trust.

Build initial knowledge. Initially, sellers send ads of their
items, and interested visitors receive them. To simulate this, in
each round, each seller sends one ad in each of the contexts ci

with which it is associated. Visitors who are associated with
ci receive the ad and the process of rating and trust update
proceeds as described above. Over the set of all sellers, most
ads are produced in few contexts (those with most sellers) and
few ads in most contexts (those with few sellers), simply as
a consequence of allocating sellers to contexts according to a
Zipf distribution.

Trust bootstrapping. After the initial phase, whenever
visitors wish to view ads in a given context, their devices
have to choose the best seller(s) in that context. To model
this, each visitor selects one new seller in each of the contexts
cj to which it has been assigned. To do so, for each context
cj , the visitor:
1. Bootstrap trust in cj for all known sellers other than those
we have already assigned to cj ;
2. Select the seller with the highest bootstrapped value;
3. Update its utility: utility sum= utility sum + 1

w (w −
dist(cj , cs)). In words, the closer cj to the seller’s expertise
(cs), the higher the visitor’s utility increase. To obtain an aver-
age utility within [0, 1], we have normalized the contribution
to the sum (multiplying it by 1

w ).
Two standard bootstrapping methods. In the first of those

three steps, each visitor must bootstrap her trust. To do so,
literature includes two approaches: initial disposition boot-
strapping [20] and recommendation-based bootstrapping [5].
We hence consider that each visitor bootstraps trust with three
methods and records a sum of utility for each of them. Thus,
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Fig. 4. Average bootstrapping utility for TRULLO, two standard boot-
strapping methods, and the median of trust values across sellers and across
contexts. We average all utilities across all visitors, and each utility lies within
[0, 1]. Recommendation-based bootstrapping relies on the ideal case of truthful
recommenders (no fake recommendations) among which there is no ontology
misalignment.

in addition to TRULLO, we consider:

• Initial disposition bootstrapping. The visitor sets the
initial trust to be a fixed value in a range [0, 1] that
reflects her disposition to trust. For example, that value
might be 0.2 if the she is pessimist, or 0.8 if she is
optimist. In our simulation, a visitor setting the same
initial trust (whatever that is) for all sellers is equivalent
of a visitor randomly choosing a seller, thus making initial
disposition bootstrapping the worst-case scenario.

• Recommendation-based bootstrapping. The visitor boot-
straps trust in seller B in context cx by collecting
recommendations from other visitors. We consider that
recommenders send their actual trust values in B (i.e.,
they are wholly reliable) in context cx (with no ontology
misalignment). Under such assumptions, and given that
sellers perform consistently over time, recommendation-
based bootstrapping is the ideal case. To see why, con-
sider that a recommendation about B is a record of how
B performed. That record is objective in the sense that
the recommender does not introduce any distortion (no
ontology misalignment or fake recommendations). As B
performs consistently over time, the recommendation is
a predictor of how B will perform at all future points.
Naturally, this is unrealistic but it serves as a yardstick
(best case scenario) to evaluate TRULLO.

3) Simulation Results: We report results of the simulation
execution first, and then closely analyze how some simulated
factors might have affected them.

TRULLO compared to two standard bootstrapping
methods. We compare TRULLO to both initial disposition
bootstrapping and recommendation-based bootstrapping. We
simulate a typical antique market that consists of Ns = 100
sellers and of Nv = 1000 visitors. We run the first part of
the simulation twice. As we will see, after two updates, trust
values converge (i.e., their confidence is maximum) because
sellers performs consistently over time. We then run the second
part and average the utilities for each bootstrapping methods
across all visitors. Figure 4 shows that TRULLO’s average util-
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Fig. 5. Average bootstrapping utility for TRULLO and two standard
bootstrapping methods as a function of the probability p of sellers randomly
changing their expertise.

ity (0.62) is much closer to (the ideal) recommendation-based
bootstrapping’s (0.74) than to (the baseline) initial disposition
bootstrapping’s (0.34). Even if it relies on truthful recommen-
dations with no ontology misalignments, recommendation-
based bootstrapping does not reach the maximum average
utility of 1 because some contexts have no specialized sellers
(selecting which the resulting utility would be 1).

TRULLO compared to a simple median. One may now
ask whether using a simple median instead of TRULLO would
yield similar results. To see whether this is the case or not,
consider a visitor bootstrapping its trust in seller S. We
distinguish two cases:

1) If the visitor knows ks sellers in the bootstrapping
context, it may set its initial trust as the median of its
trust values in those sellers (median across sellers).

2) If the visitor knows S across kc contexts, it may boot-
strap trust as the median of its trust values in S across
those contexts (median across contexts).

Figure 4 shows that TRULLO’s average utility is much
higher than that of the median (computed across either sellers
or contexts). In particular, either median performs slightly
better than initial disposition. Still, for any number of con-
texts/sellers, either median’s utility is less than 0.45.

Factors affecting the effectiveness of TRULLO. Having
these preliminary results, we now see how some simulated
factors might have affected TRULLO’s bootstrapping utility:
• Confidence in the trust values upon which visitors boot-

strap. By decreasing the number of rounds of the first part
of the simulation, visitors would receive fewer ads from
sellers and thus run fewer trust updates, and they would
then bootstrap trust upon more uncertain trust values. By
doing so, TRULLO’s average utility, however, does not
significantly change because sellers perform consistently
over time, and hence trust values in them converge just
after receiving two ads from any of them in a given
context. So, to capture real-life unpredictability in the
behavior of sellers, we now allow sellers to send ads
whose relevance reflects either their actual expertise with
probability (1− p) or a randomly chosen expertise with
probability p. Figure 5 shows that as p increases, the
average utilities for TRULLO and recommendation-based
bootstrapping decrease, as expected. However, even for
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high values of p, both bootstrapping methods perform
better than initial disposition. Also, their utilities decrease
linearly. The reason is that for each ‘misplaced’ ad (i.e.,
ad that a seller sends from a context other than that of
her expertise), the utility decreases by a certain amount
on average. The number of ‘misplaced’ ads increases as
p increases and, thus, the average utility proportionally
decreases.

• Size of the input matrix. The size of TRULLO’s input
matrix depends on how sellers distribute across contexts.
As the input size changes, bootstrapping accuracy might
change, and that might affect the utilities of visitors using
TRULLO. To see how, during the simulation execution,
whenever TRULLO bootstrapped trust, we kept track
of its utility and of the corresponding input size. We
then averaged all utilities corresponding to the same size.
Figure 6 shows that TRULLO performs better than initial
disposition bootstrapping even on input of one single trust
value. As one might expect, as the number of contexts and
the number of sellers upon which TRULLO bootstraps
increase, so does its average utility.

B. Computational Cost of TRULLO

Given that TRULLO effectively bootstraps trust, it is now
worth checking whether it is usable on a mobile phone. To
this end, we implemented TRULLO in J2ME and ran it on a
Nokia 3230 mobile phone (whose features include: Symbian
operating system 7.0, 32 MB of memory, 32-bit RISC CPU).
Figure 7 shows TRULLO performance, given as the mean of
10 runs, for varying input (ks×kc) matrix sizes. We minimized
background activities by shutting down all applications other

than TRULLO. The computational overhead is very low. That
is because TRULLO’s input matrix only contains the ratings
of a single user’s past experiences. For example, to bootstrap a
value in a context in which 20 sellers are known in 10 contexts
(maximum input in the previous experiments), TRULLO takes
just 3.2 milliseconds.

V. DISCUSSION

Based on those evaluation results, we now discuss various
open questions.

Correlation of how sellers perform across contexts.
One inherent property of TRULLO design is that one can
extract statistical features from trust values. Unfortunately,
we do not have any trust set from real ubiquitous computing
applications that corroborates this property. However, we do
have Internet web sites reporting user ratings across contexts.
Take hostels.com: it reports customer ratings of hostels across
contexts, namely character, security, location, staff, fun, and
cleanliness. By sampling parts of these trust ratings and
applying the singular value decomposition, we learned that
they do correlate across contexts - for example, trust ratings
about ‘character’ and ‘staff’ roughly share the same statistical
features. That, however, does not guarantee that this would
be the case in all ubiquitous computing applications. For this
reason, our simulation setup has made no explicit assumption
on whether trust correlates across contexts, and it has shown
how some simulated factors have affected the results.

Choosing the right bootstrapping method for a ubiqui-
tous computing application. The choice of the right boot-
strapping method is application-dependent. More concretely,
consider the following aspects that are usually critical in
ubiquitous computing:
• Device computational cost. If the computational cost

must approach zero and bootstrapping accuracy does not
matter, then initial disposition bootstrapping may be a
fair choice. Otherwise, one might use TRULLO, which
runs on a standard mobile at modest computational cost
(Section IV-B).

• Device communication overhead. In a fully distributed
setting, asking for recommendations might considerably
increase data traffic among devices. To avoid that, one
may use TRULLO since it is more effective than initial
disposition bootstrapping and solely relies on local infor-
mation (no device communication required).

• Threats. Modeling hostile environments is an important
research question, on which we have not focused but
now ponder briefly. Consider environments that may be
deemed hostile because of either ontology misalignments
among users, or presence of fake recommendations, or
users behaving very differently across contexts. At the
presence of the first two problems (which are indeed very
likely), recommendation-based bootstrapping may suffer
as it relies on third party information that, in this case,
would be made unreliable by ontology misalignments
and fake recommendations. In such a situation, one may
prefer TRULLO as it relies only on local information.
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However, if sellers perform very differently across logi-
cally close/related contexts, then TRULLO may turn to
be a poor choice as it would not extract any statistical
property from sellers’ behavior. Thus, at the presence of
all three problems, one has to resort to initial disposition
bootstrapping.

VI. RELATED WORK

Literature includes three main ways to set initial trust. First,
most of the reputation models in P2P networks [21], [22]
and in social networks [23], [24] effectively bootstrap trust
using recommendations, but they do so in a single context. It
would be no trivial, yet interesting to extend these approaches
using, for example, collaborative filtering techniques [25].
However, this extension needs further research for coping with
fake recommendations and ontology misalignments among
recommenders, and for scaling in a fully distributed setting
of portable devices.

The second proposition consists in assigning fixed trust
bootstrapping values. Two examples include: Perich et al. [20],
who define trust values based on the trustor’s initial disposi-
tions (pessimistic, optimistic, and undecided); and Buchegger
et al. [6], who set the initial trust to a uniform distribution
(as does our recent work [19]). Those choices apply only to
specific problem domains (e.g., to packet forwarding).

The third proposition consists in setting the initial trust
value for B in context cx close to the trust values we already
have about B in contexts similar to cx. This may efficiently
bootstrap trust, but, on the other hand, needs a measure of
contextual distance to find out which are the contexts similar
to cx. Two recent types of approach might fill the gap: the
first [26], [7] defines similarity between any two contexts in
an ontology as the distance between the two corresponding
nodes; the second type [27] draws context similarity based on
a direct graph of contexts (a less-constrained structure than
a tree) whose weights have to be, however, manually set by
device users. The researchers who proposed the first type of
approach have acknowledged that the idea of a universally
accepted context ontology hardly belongs to reality; those of
the second concede that their solution has to be automated to
be usable. TRULLO automates the bootstrapping process in
that it decomposes the ratings of its user’s past experiences
and consequently determines unknown trust values without
user intervention.

VII. CONCLUSION

We have shown that TRULLO effectively bootstraps trust
by integrating it with B-trust (an existing trust model for
ubiquitous devices) and by simulating its use on ubiquitous
devices in informal antique markets; in particular, TRULLO
performs close to how exchanging recommendations would
do in an ideal (though unrealistic) world, one in which
recommenders are wholly truthful and, furthermore, share the
same ontology. Our J2ME implementation of TRULLO does
not impact the usability of a Nokia 3230 mobile phone. We

are currently designing controlled experiments to be carried
out in a large scale deployment.

Acknowledgments: We thank Damon Wischik, Vladimir
Dyo, and Ilias Leontiadis for their contributions, and Microsoft
Research Cambridge for its financial support.

REFERENCES

[1] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” in Proc. of ACM WSW,
2006.

[2] H. Rheingold, Smart Mobs: The Next Social Revolution. Perseus Books
Group, 2002.

[3] L. Kagal, T. Finin, and A. Joshi, “Trust-Based Security in Pervasive
Computing Environments,” IEEE Computer, December 2001.

[4] V. Cahill, E. Gray, J.-M. Seigneur, C. Jensen, Y. Chen, B. Shand,
N. Dimmock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis,
P. Nixon, G. Serugendo, C. Bryce, M. Carbone, K. Krukow, and
M. Nielsen, “Using Trust for Secure Collaboration in Uncertain Environ-
ments,” IEEE Pervasive Computing Mobile and Ubiquitous Computing,
August 2003.

[5] A. Abdul-Rahman and S. Hailes, “Supporting Trust in Virtual Commu-
nities,” in Proc. of HICSS, 2000.

[6] S. Buchegger and J.-Y. L. Boudec, “A robust reputation system for P2P
and mobile ad-hoc networks,” in Proc. of P2PECON, 2004.

[7] J. Liu and V. Issarny, “Enhanced Reputation Mechanism for Mobile Ad
Hoc Networks,” in Proc. of iTrust. LNCS, 2004.

[8] G. Forsythe, M. Malcom, and C. Moler, Computer Methods for Math-
ematical Computations. Prentice Hall, 1977.

[9] J. Coutaz, J. Crowley, S. Dobson, and D. Garlan, “Context is key,”
Communications of the ACM, March 2005.

[10] J. Crowley, J. Coutaz, G. Rey, and P. Reignier, “Perceptual Components
for Context Aware Computing,” in Proc. of Ubicomp. LNCS, 2002.

[11] J. R. Douceur, “The Sybil Attack,” in Proc. of IPTPS, 2002.
[12] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard:

defending against sybil attacks via social networks,” in Proc. of ACM
SIGCOMM, 2006.

[13] B. Shand, N. Dimmock, and J. Bacon, “Trust for ubiquitous, transparent
collaboration,” Wireless Networks, March 2004.

[14] A. Serjantov and R. Anderson, “On dealing with adversaries fairly,” in
Proc. of WEIS, 2004.

[15] R. Hardin, “The street-level epistemology of trust,” Politics and Society,
December 1993.

[16] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tib-
shirani, D. Botstein, and R. Altman, “Missing value estimation methods
for DNA microarrays,” Bioinformatics, vol. 17, no. 6, 2001.

[17] I. Yang, H. Jeong, B. Kahng, and A. L. Barabasi, “Emerging behavior
in electronic bidding,” Physical Review, vol. 68, no. 1, 2003.

[18] A.-L. Barabasi, Linked: How Everything Is Connected to Everything
Else and What It Means. Penguin, 2003.

[19] D. Quercia, S. Hailes, and L. Capra, “B-trust: Bayesian Trust Framework
for Pervasive Computing,” in Proceedings of iTrust. LNCS, 2006.

[20] F. Perich, J. Undercoffer, L. Kagal, A. Joshi, T. Finin, and Y. Yesha, “In
Reputation We Believe: Query Processing in Mobile Ad-Hoc Networks,”
in Proc. of the IEEE Mobiquitous, 2004.

[21] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer infor-
mation system,” in Proc. of ACM CIKM, 2001.

[22] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust
algorithm for reputation management in P2P networks,” in Proc. of ACM
WWW, 2003.

[23] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust
and distrust,” in Proc. of ACM WWW, 2004.

[24] J. Sabater and C. Sierra, “Reputation and social network analysis in
multi-agent systems,” in Proc. of the ACM AAMAS, 2002.

[25] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl, “Grouplens: Applying collaborative filtering to Usenet news,”
Communications of the ACM, 1997.

[26] L. Capra, “Reasoning about Trust Groups to Coordinate Mobile Ad-Hoc
Systems,” in Proc. of IEEE SECOVAL, 2005.

[27] M. Kinateder and K. Rothermel, “Architecture and Algorithms for a
Distributed Reputation System,” in Proc. of iTrust. LNCS, 2003.

8


