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Abstract. We present a methodology for verifying epistemic and real-time tem-
poral properties of multi-agent systems. We introduce an interpreted systems se-
mantics based on diagonal timed automata and use a real-time temporal epistemic
language to describe properties of multi-agent systems. We develop a bounded
model checking algorithm for this setting and present experimental results for a
real-time version of the alternating bit-transmission problem obtained by means
of a preliminary implementation of the technique.

1 Introduction

Reasoning about knowledge has always been a core concern in AI and in multi-agent
systems. This is no surprise given that knowledge is a key concept to model intelligent,
rational activities, human or artificial. A plethora of formalisms have been proposed and
refined over the years, many of them based on logic. One of the most widely studied is
based on variants of modal logics and is commonly referred to as epistemic logic [7].
Rather than providing a computational engine for artificial agents’ reasoning, epistemic
logic, at least in this line, is seen as a specification language for modelling and reasoning
about systems, much in common with formal methods in computer science.

Specification languages are most useful when they can be verified automatically. In
this effort both theorem proving and model checking techniques and tools have been
made available for epistemic logic. In particular, model checking techniques based on
BDD [14, 16], bounded model checking [12], unbounded model checking [8] have been
developed and their implementation either publicly released [14, 1] or made available
via a web-interface [11].

While, given the above, one may be forgiven for thinking that verification via model
checking of temporal epistemic logic has now become of age, in many respects the area
is still lacking support for many essential functionalities. One of these is real-time.
While the formalisms above deal with discrete sequence of events, it is often of both
theoretical and practical interest to refer to a temporal model that assumes a dense se-
quence of events and use operators able to represent dense temporal intervals. The only
work in this line we are aware of is [17], where a bounded model checking algorithm
for TECTLK was suggested. In this paper we aim to extend two key limitations of that
work in that: 1) we assume an underlying computationally more expressive semanti-
cal model (diagonal timed automata), 2) we report on an in-house implementation of
this technique and discuss experimental results. Further, to exemplify the use of the
techniques described in the paper we present a real-time version of the alternating bit



transmission problem — a key requirement of this example is the expressive power of
a semantics based on diagonal timed automata as the one presented here.

The rest of the paper is organised as follows. In Section2 we present real-time inter-
preted systems, a semantics for knowledge and real-time, based on diagonal timed au-
tomata. In Section 3 we present syntax and semantics for TECTLK, the logic for which
the verification method is defined. In Section 4 we define a bounded model checking al-
gorithm for the logic; given the state-spaces in question are infinite the method involves
a tailored discretisation process. Finally we test these techniques on a novel real-time
variant of the alternating bit protocol.

2 Diagonal real-time interpreted systems

In [17] a semantics for real-time and knowledge based on non-diagonal timed automata
was proposed. Automata are given as the finer grained semantics on which real-time
interpreted systems are defined. In that framework the only clock conditions that can be
used are of the form x ∼ c where x is a clock, c a constant and ∼ an equality/inequality
relation. While this is appropriate for some scenarios (like the “railroad crossing sys-
tem” discussed in that article), it is well known that in others more expressive tests are
required. Crucially, we may need to compare two clocks of the system as an enabling
condition for a transition. Introducing more expressive clock comparisons is known to
generate considerable complications in the verification methodology [3], including a
loss of completeness in the resulting bounded model checking technique [10]; aim of
this paper is to analyse this setting for the case of real-time and epistemic properties.

To define diagonal real-time interpreted systems we first recall the definitions of
diagonal timed automata and their composition. We refer to [15] for discussion and
more details.

We assume a finite set X of real variables, called clocks, and for x, y ∈ X, ∼∈ {<, ≤,
=, >, ≥}, c ∈ IN, where IN = {0, 1, . . .} is a set of natural numbers, we define a set of
clock constraints over X, denoted by C(X), by means of the following grammar:

cc ::= true | x ∼ c | x − y ∼ c | cc ∧ cc

A clock valuation v is a total function from X into the set of non-negative real
numbers IR. IRX denotes the set of all the clock valuations, and the satisfaction relation
|= for a clock constraint cc ∈ X and v ∈ IRX is defined inductively as follows:

v |= true,
v |= (x ∼ c) iff v(x) ∼ c,
v |= (x − y ∼ c) iff v(x) − v(y) ∼ c,
v |= (cc ∧ cc′) iff v |= cc and sv |= cc′

For cc ∈ C(X), ~cc� denotes the set of all the clock valuations that satisfy cc. The
clock valuation that assigns the value 0 to all clocks is denoted by v0. For v ∈ IRX and
δ ∈ IR, v + δ is the clock valuation that assigns the value v(x) + δ to each clock x. For
v ∈ IRX and Y ⊆ X, v[Y] denotes the clock valuation of X that assigns the value 0 to
each clock in Y and leaves the values of the other clocks unchanged.
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Definition 1 (Diagonal timed automaton). Let PV be a set of propositional vari-
ables. A diagonal timed automaton is a tupleA = (Σ, L, l0, X,I,R,V), where

– Σ is a nonempty finite set of actions,
– L is a nonempty finite set of locations,
– l0 ∈ L is an initial location,
– X is a finite set of clocks,
– I : L 7→C(X) is a state invariant function, and
– R ⊆ L × Σ ×C(X) × 2X × L is a transition relation,
– V : L 7→ 2PV is a function assigning to each location a set of atomic propositions

true in that location.

An element (l, σ, cc, Y, l′) ∈ R represents a transition from location l to location l′

labelled with an action σ. The invariant condition states that the automaton is allowed
to remain in location l only as long as the constraint I(l) is satisfied. The guard cc has
to be satisfied to enable the transition. The transition resets all clocks in the set Y to the
value 0.

As usual, the semantics of diagonal timed automata is defined by associating dense
models to them.

Definition 2 (Dense Model). Let A = (Σ, L, l0, X,I,R,V) be a diagonal timed au-
tomaton, and C(A) ⊆ C(X) a set of all the clock constrains occurring in any enabling
condition used in the transition relation R or in a state invariant of A. A dense model
forA is a tuple G(A) = (Σ ∪ IR,Q, q0,→, Ṽ), where

– Σ ∪ IR is a set of labels,
– Q = L × IRX is a set of states,
– q0 = (l0, v0) is an initial state,
– → ⊆ Q × (Σ ∪ IR) × Q is a time/action transition relation defined by:

• Time transition: (l, v)
δ
→ (l, v + δ) iff (∀0 ≤ δ′ ≤ δ) v + δ′ ∈ ~I(l)�

• Action transition: (l, v)
σ
→ (l′, v′) iff (∃cc ∈ C(A))(∃Y ⊆ X) such that v′ = v[Y],

(l, σ, cc,Y, l′) ∈ R, v ∈ ~cc�, and v′ ∈ ~I(l′)�.
– Ṽ : Q 7→ 2PV is a valuation function such that Ṽ((l, v)) = V(l)

Lemma 1. Let cc ∈ C(X), v ∈ IRX , and δ ∈ IR. If v ∈ ~cc� and v+ δ ∈ ~cc�, then for each
(0 ≤ δ′ ≤ δ) v + δ′ ∈ ~cc�.

Proof Straightforward by induction on clock constraints. �

As the above lemma shows, for the considered set of clock constraints C(X), in
the semantics of diagonal timed automata the condition of a time transition (l, v)

δ
−→

(l, v + δ) can be replaced by the following: v ∈ ~cc� and v + δ ∈ ~cc�.
In this paper we take diagonal timed automata to provide the lower level, fine-

grained description for the agents; the composition of these defines a multi-agent sys-
tems. So, in this paper, the computations of a multi-agent system are simply the traces
generated by the executions of a network of diagonal timed automata that communicate
through shared actions. We model this communication via the standard notion of the
parallel composition [15], as defined below.
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Consider a network of m diagonal timed automata Ai = (Σi, Li, l0i , Xi,Ii,Ri,Vi),
for i = 1, . . . ,m, such that Li ∩ L j = ∅ for all i, j ∈ {1, . . . ,m} and i , j, and denote
by Σ(σ) = {1 ≤ i ≤ m | σ ∈ Σi} the set of indexes of the automata performing
action σ. The parallel composition of m diagonal timed automata Ai is a diagonal
timed automaton A = (Σ, L, l0, X,I,R,V), where Σ =

⋃m
i=1 Σi, L =

∏m
i=1 Li, l0 =

(l01, . . . , l
0
m), X =

⋃m
i=1 Xi, I((l1, . . . , lm)) =

∧m
i=1 Ii(li), V((l1, . . . , lm)) =

⋃m
i=1Vi(li),

and a transition ((l1, . . . , lm), σ, cc,Y, (l′1, . . . , l
′
m)) ∈ R iff (∀i ∈ Σ(σ)) (li, σ, cci,Yi, l′i) ∈ Ri,

cc =
∧

i∈Σ(σ) cci, Y =
⋃

i∈Σ(σ) Yi, and (∀ j ∈ {1, . . . ,m} \ Σ(σ)) l′j = l j.
Observe that, given the above, transitions in which actions are not shared are inter-

leaved, whereas the transitions caused by shared action are synchronised.
To give a definition of real-time interpreted systems that supports clock constraints

of the form x − y ∼ c, we define the notion of weak region equivalence [19].

Definition 3 (Weak Region Equivalence). Assume a set of clocks X, and for any t ∈ IR
let 〈t〉 denote the fractional (respectively integral) part of t (respectively btc). The weak
region equivalence is a relation �⊆ IRX × IRX defined as follows (see Figure 1 for an
intuition). For two clock valuations u and v in IRX , u � v iff all the following conditions
hold:
E1. bu(x)c = bv(x)c, for all x ∈ X,
E2. 〈u(x)〉 = 0 iff 〈v(x)〉 = 0, for all x ∈ X,
E3. 〈u(x)〉 < 〈u(y)〉 iff 〈v(x)〉 < 〈v(y)〉, for all x, y ∈ X.
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Fig. 1. Weak Region Equivalence of clock valuations for two clocks.

We will use Z, Z′, and so on to denote the equivalence classes induced by the relation
�. As customary, we call these classes zones, and the set of all the zones we denote by
Z(|X|).

A diagonal real-time interpreted system is defined as follows.

Definition 4 (Diagonal real-time interpreted system). Consider m diagonal timed
automata and their parallel composition. A diagonal real-time interpreted system (or a
model) is a tuple M = (Σ ∪ IR,Q, q0,→,∼1, . . . ,∼m, Ṽ) such that

– Σ ∪ IR, Q, q0,→, and Ṽ are defined as in Definition 2, and
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– for each agent i, ∼i ⊆ Q × Q is a relation defined by: (l, v) ∼i (l′, v′) iff li((l, v)) =
li((l′, v′)) and v � v′, where li : Q 7→ Li is a function returning the location of agent
i from a global state.

As in [7] we consider two (global) states to be epistemically indistinguishable for
agent i if its local state (i.e., its location) is the same in the two global states. Addi-
tionally we assume the agents’ clocks to be globally visible, although only privately
resettable. For two states to be indistinguishable we further assume the clocks of the
states belong to the same zone, i.e., the agents are aware of their own clocks’ discreti-
sations. This is not dissimilar from [17].

3 TECTLK
In this section we introduce TECTLK a logic for knowledge and real time. While the
logic is the same as the one described in [17], satisfaction is here defined on diagonal
real-time interpreted systems.

Syntax. Let PV be a set of propositional variables containing the symbol >,AG a
set of m agents, and I an interval in IR with integer bounds of the form [n, n′], [n, n′),
(n, n′], (n, n′), (n,∞), and [n,∞), for n, n′ ∈ IN. For p ∈ PV, i ∈ AG, and Γ ⊆ AG, the
set of TECTLK formulas is defined by the following grammar:

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | E(ϕUIϕ) | E(ϕRIϕ) | Kiϕ | DΓϕ | CΓϕ | EΓϕ

The other temporal modalities are defined as usual: ⊥
de f
= ¬>, EGIϕ

de f
= E(⊥RIϕ),

EFIϕ
de f
= E(>UIϕ). Moreover, α⇒ β

def
= ¬α ∨ β.

Semantics. Let M = (Σ ∪ IR,Q, q0,→,∼1, . . . ,∼m, Ṽ) be a model. We define a q0-

run ρ as a sequence of states: q0
δ0
→ q0 + δ0

σ0
→ q1

δ1
→ q1 + δ1

σ1
→ q2

δ2
→ . . ., where qi ∈ Q,

σi ∈ Σ and δi ∈ IR+ for each i ∈ IN, and by fA(q0) we denote the set of all such q0-runs.
We say that a state q ∈ Q is reachable if there is a q0−run ρ such that there exists a

state in ρ equal to q. Finally, in order to give a semantics to TECTLK, we introduce the
notation of a dense path πρ corresponding to a run ρ. A dense path πρ corresponding to
ρ is a mapping from IR to a set of states Q such that πρ(r) = qi + δ for r = Σ i

j=0δ j + δ

with i ∈ IN and 0 ≤ δ < δi. Moreover, we define the following epistemic relations:
∼E
Γ
=
⋃

i∈Γ ∼i, and ∼C
Γ
= (∼E

Γ
)+ (the transitive closure of ∼E

Γ
), and ∼D

Γ
=
⋂

i∈Γ ∼i, where
Γ ⊆ AG.

Definition 5. Let M = (Σ ∪ IR,Q, q0,→,∼1, . . . ,∼m, Ṽ) be a model such that the set
Q contains reachable states only. M, q |= α denotes that α is true at state q in M. The
satisfaction relation |= is defined inductively as follows:

M, q |= p iff p ∈ Ṽ(q),
M, q |= ¬p iff p < Ṽ(q),
M, q |= α ∨ β iff q |= α or q |= β,
M, q |= α ∧ β iff q |= α and q |= β,
M, q |= E(αUIβ) iff ∃ρ∈ fA(q)∃r∈I[M, πρ(r) |= β and (∀r′<r)M, πρ(r′) |= α],
M, q |= E(αRIβ) iff ∃ρ∈ fA(q)∀r∈I[M, πρ(r) |= β or (∃r′<r)M, πρ(r′) |= α],
M, q |= Kiα iff (∃q′ ∈ Q)(q ∼i q′ and M, q′ |= α),
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M, q |= DΓα iff (∃q′ ∈ Q)(q ∼D
Γ

q′ and M, q′ |= α),
M, q |= EΓα iff (∃q′ ∈ Q)(q ∼E

Γ
q′ and M, q′ |= α),

M, q |= CΓα iff (∃q′ ∈ Q)(q ∼C
Γ

q′ and M, q′ |= α).

We say a TECTLK formula ϕ is valid in M (denoted by M |= ϕ) iff M, q0 |= ϕ, i.e.,
ϕ is true at the initial state of the model M. In the rest of the paper we are concerned
with devising and implementing an automatic model checking algorithm for checking
whether a formula ϕ is valid in a given model M.

4 Bounded Model Checking for TECTLK

Bounded model checking (BMC) is a popular model checking technique for the verifi-
cation of reactive systems [2, 5]. On discrete-time, it is supported by nuSMV [4] and in
its epistemic extension by Verics [11]. Verifying whether a system S satisfies a property
P amounts to checking MS |= φP, where MS is a model capturing S and φP is a prop-
erty representing P. In BMC this check is turned into the propositional satisfiability test
(ultimately performed by ad-hoc highly-efficient SAT solvers) of [MS ] ∧ [φP], where
[MS ], [φP] are appropriate Boolean formulas representing a truncated portion of the
model MS and the modal formula φP. We refer to [12] for a description of the technique
for the case of discrete-time epistemic properties.

To define a BMC method for diagonal real-time interpreted systems, we adapt the
BMC technique for TECTLK and non-diagonal automata presented in [17]. We first
translate the BMC problem from TECTLK into the BMC problem for ECTLKy (a dis-
cretised version), and then we define BMC for ECTLKy.

4.1 Translation from TECTLK to ECTLKy

When dealing with real-time it is customary to discretise the state space. We use the
scheme introduced in [19], which we shortly describe. Let � be a set of rational num-
bers. For every m ∈ IN, we define Dm = {d ∈ � | (∃k ∈ �) d · 2m = k}, Em = {e ∈ � |
(∃k ∈ �) e · 2m = k and e > 0}, and we choose D =

⋃∞
m=0 Dm as the set of discretised

clock’s values, and E =
⋃∞

m=1 Em as the set of labels.

Definition 6 (Discretised model). Let A = (Σ, L, l0, X,I,R,V) be a diagonal timed
automaton resulting from the parallel composition of m diagonal timed automata (agents).
A discretised model forA is a tuple Md = (Σ∪E, S , s0,→d,∼

d
1, . . . ,∼

d
m, Ṽd), where S =

L×DX is a set of states, s0 = (l0, v0) is the initial state, ∼d
i ⊆ S ×S is an relation defined

by (l, v) ∼d
i (l′, v′) iff li((l, v)) = li((l′, v′)) and v � v′, for each agent i, Ṽd : S 7→ 2PV

is a valuation function defined by Ṽd((l, v)) = V(l), and →d⊆ S × (Σ ∪ E) × S is a
time/action transition relation defined by:

– Time transition: for any δ ∈ E, (l, v)
δ
→d (l, v + δ) iff (l, v)

δ
→ (l, v + δ) in G(A) and

(∀δ′ ≤ δ) v + δ′ � v or v + δ′ � v + δ,

– Action transition: for any σ ∈ Σ, (l, v)
σ
→d (l′, v′) iff (∃δ)(∃v′′) such that (l, v)

δ
→d

(l, v′′) and (l, v′′)
σ
→ (l′, v′) in G(A).
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The general idea of the translation is the same as the one in [17], but obviously
given the different capabilities there are differences. In particular, the discretised model
used here is infinite; so while the procedure in [17] is sound and complete, the one here
is only sound1.

Specifically, given a multi-agent system modelled by a network of diagonal timed
automata Ai = (Σi, Li, l0i , Xi,Ii,Ri,Vi) and a TECTLK formula ϕ, we extend each
automatonAi by a new clock y, an action σy, and transitions to obtain a new automaton
A

ϕ

i = (Σi∪{σy}, Li, l0i , X
′
i ,Ii,R′i ,Vi) with X′i = Xi∪{y} and R′i = Ri∪{(l, σy, true, {y}, l) |

l ∈ L}. The clock y corresponds to all the timing intervals appearing in ϕ, and special
transitions are used to reset the new clock. We then construct the discretised model for
the parallel composition ofAϕ

i , denoted byAϕ, and augment its valuation function with
the set of propositional variables containing a new proposition py∈I for every interval I
appearing in ϕ, and a new proposition pb representing that a state s is boundary, i.e., the
fractional part of the clock’s valuation in s is zero. Finally, we translate the TECTLK
formula ϕ into an ECTLKy formula ψ = cr(ϕ) such that model checking of ϕ over the
model for the parallel composition of Ai can be reduced to the model checking of ψ
over the discretised model forAϕ.

Before we define the final part of the above construction, we will first introduce the
syntax and semantics for ECTLKy.

Let p ∈ PV′ = PV ∪ {pb} ∪ {py∈I | I is an interval in ϕ}. Then, the set of ECTLKy

formulae is defined by the following grammar:

α := p | ¬p | α ∧ α | α ∨ α | Ey(αUα) | Ey(αRα) | Kiα | DΓα | CΓα | EΓα

ECTLKy is interpreted over the discretised model Md forAϕ.

Definition 7 (Satisfaction for ECTLKy). Let α, β be formulae of ECTLKy, Md =

(Σ ∪ E, S , s0,→d,∼
d
1, . . . ,∼

d
m, Ṽd) a discretised model for Aϕ, →A denotes the part

of →d, where transitions are labelled with elements of Σ ∪ E, and →y denotes the
transitions that reset the clock y. A path π in Md is a sequence (s0, s1, . . .) of states such
that si →A si+1 for each i ∈ IN, and Π(s) denotes the set of all the paths starting at s in
Md. The satisfaction relation |= is defined inductively as follows:

Md, s |= p iff p ∈ Ṽd(s),
Md, s |= ¬p iff p < Ṽd(s),
Md, s |= α ∨ β iffMd, s |= α or Md, s |= β,
Md, s |= α ∧ β iffMd, s |= α and Md, s |= β,
Md, s |= Ey(αUβ) iff (∃s′ ∈ S )(s→y s′ and (∃π ∈ Π(s′))(∃m ≥ 0)

[Md, π(m) |= β and (∀ j < m) Md, π( j) |= α]),
Md, s |= Ey(αRβ) iff (∃s′ ∈ S )(s→y s′ and (∃π ∈ Π(s′))(∀m ≥ 0)

[Md, π(m) |= β or (∃ j ≤ m) Md, π( j) |= α]),
Md, s |= Kiα iff ∃π∈Π(s0)∃ j≥0(Md, π( j) |= α and s ∼i π( j)),
Md, s |= DΓα iff ∃π∈Π(s0)∃ j≥0(Md, π( j) |= α and s ∼D

Γ
π( j)),

1 Note though that because of the complexity in the SAT translation and satisfiability checks,
BMC is never complete in practice when the system is sufficiently complex, so this is not a
real concern.
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Md, s |= EΓα iff ∃π∈Π(s0)∃ j≥0(Md, π( j) |= α and s ∼E
Γ
π( j)),

Md, s |= CΓα iff ∃π∈Π(s0)∃ j≥0(Md, π( j) |= α and s ∼C
Γ
π( j)).

Definition 8 (Validity). An ECTLKy formula ϕ is valid in Md (denoted Md |= ϕ) iff
Md, s0 |= ϕ, i.e., ϕ is true at the initial state of Md.

We can now translate inductively a TECTLK formula ϕ into the ECTLKy formula
cr(ϕ). The translation is defined inductively as follows:
• cr(p) = p for p ∈ PV′,
• cr(¬p) = ¬cr(p) for p ∈ PV′,
• cr(α ∨ β) = cr(α) ∨ cr(β),
• cr(α ∧ β) = cr(α) ∧ cr(β),
• cr(E(αUIβ)) = Ey(cr(α)U(cr(β) ∧ py∈I ∧ (pb ∨ cr(α)))),
• cr(E(αRIiβ)) = Ey(cr(α)R(¬py∈Ii ∨ (cr(β) ∧ (pb ∨ cr(α))))).
• cr(Kiα) = Kicr(α),
• cr(DΓα) = DΓcr(α),
• cr(EΓα) = EΓcr(α),
• cr(CΓα) = CΓcr(α).

4.2 Correctness of the translation from TECTLK to ECTLKy

In the section we will show that validity of a TECTLK formula ϕ over the model for
A = (Σ, L, l0, X,I,R,V) is equivalent to the validity of cr(ϕ) over the discretised model
forAϕ with the extended valuation function.

We begin by proving the fact that states belonging to the same region, i.e., to the
pair (l,Z) with l ∈ L and Z ∈ Z(|X|), satisfies the same set of TECTLK formulae. To do
this, we will first prove Lemmas 2-5.

Lemma 2. Let X be a set of clocks, and u, v ∈ IRX be clock valuations such that u � v.
For any clock constraint cc ∈ C(X), u ∈ ~cc� iff v ∈ ~cc�.

Proof Straightforward induction on clock constraints. �

Lemma 3. Let u, v be clock valuations such that u � v. For every δ ∈ IR there exists
δ′ ∈ IR such that u + δ � v + δ′.

Proof We omit the proof as it is analogous to the proof of the Lemma 4.3 of [18] �

Further, we extend the equivalence relation � to an equivalence relation over the
set of states of the model M = (Σ ∪ IR,Q, q0,→,∼1, . . . ,∼m, Ṽ). Namely, for any (l, u)
and (l′, u′) in Q, (l, u) � (l′, u′) iff l = l′ and u � u′. Then, we can prove the following
lemmas.

Lemma 4. Let σ ∈ Σ, and let q1, q2 be states such that q1 � q2. Then, for each state q3

such that q1
σ
→ q3, there exists a state q4 such that q2

σ
→ q4 and q3 � q4.
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Proof Straightforward, by using Lemma 2. �

Lemma 5. Let q0, q′0 be two states such that q0 � q′0. Moreover, let ρ be a run q0
δ0
→

q0 + δ0
σ0
→ q1

δ1
→ q1 + δ1

σ1
→ q2

δ2
→ . . . of M. There exists a run ρ′ such that πρ′(0) = q′0,

and for every r ∈ IR, πρ(r) � πρ′(r)).

Proof Straightforward, by using Lemmas 3 and 4. �

We can now prove the lemma showing that states belonging to the same region
satisfies the same set of TECTLK formulae.

Lemma 6. Let M be a model, ϕ a TECTLK formula, and q = (l, u) and q′ = (l, v)
states of M such that u � v. Then, M, (l, u) |= ϕ iff M, (l, v) |= ϕ

Proof [Induction on the length of TECTLK formulae]
It is easy to see that the thesis holds for all the propositional variables and for all the

negations of propositional variables. If ϕ is of the form α ∨ β or α ∧ β, then the proof
of the thesis is straightforward. If ϕ is of the form Kiα, DΓα, CΓα, and EΓα, then the
proof of the thesis follows directly from Definition 5 and the definition of the relations
∼i, ∼D

Γ
, ∼C

Γ
, and ∼E

Γ
respectively.

It remains to prove that the thesis holds for formulas of the form E(αUIβ), and
E(αRIβ).

Consider a formula of the form E(αUIβ) and suppose that M, q |= E(αUIβ). By
Definition 5 we have that for some run ρ ∈ fA(q) there exists r ∈ I such that

M, πρ(r) |= β and (∀r′ < r) M, πρ(r′) |= α

By Lemma 5 there exists a run ρ′ ∈ fA(q′) such that for every r ∈ IR, πρ(r) � πρ′(r).
Thus, by the induction hypotheses M, πρ′ (r) |= β and (∀r′ < r) M, πρ′ (r′) |= α. Hence it
follows that M, q′ |= E(αUIβ).

The proof of the case E(αRIβ) is analogous. �

Lemma 7 ([19]). For every state (l, v) in M with v ∈ IRX there exists at least one state
(l, u) in Md with u ∈ DX such that u � v.

The following two lemmas guarantee that for each run in M we can construct an
equivalent run (path) in Md.

Lemma 8 ([19]). Let v ∈ IRX be a clock valuation, δ ∈ IR, and m ∈ �. Then for each
u ∈ DX

m such that u � v there exists δ′ ∈ Em+1 such that v + δ � u + δ′. Moreover,
u + δ′ ∈ DX

m+1.

We are now ready to show that validity of the TECTLK formula ϕ over the model
for A is equivalent to the validity of cr(ϕ) over the discretised model for Aϕ with the
extended valuation function.
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Lemma 9. Let ϕ be a TECTLK formula, M a model, and Md the discretised version of

M. Further, let (l, v)�X
de f
= (l, v�X). For any state q = (l, v) ∈ Q there exists s = (l, v′) ∈ S

such that (l, v′)�X � (l, v) and M, q |= ϕ iff Md, s |= cr(ϕ).

Proof [Induction on the length of formulae]
(“Left-to-right”) It is obvious that the thesis holds for all the propositional variables and
their negations. Next, assume that the hypothesis holds for all the proper sub-formulae
of ϕ. If ϕ is equal to either α ∧ β or α ∨ β, then it is easy to check that the lemma holds.
Consider ϕ to be of the following forms:

• ϕ = E(αUIβ). By Definition 5, we have that M, q |= E(αUIβ) if

(∃ ρ ∈ fA(q))(∃r ∈ I)[M, πρ(r) |= β and (∀r′ < r) M, πρ(r′) |= α] (1)

By the definition of run we have that ρ must be of the following form:

(l0, v0)
δ0
→ (l0, v0) + δ0

σ0
→ (l1, v1)

δ1
→ (l1, v1) + δ1

σ1
→ (l2, v2)

δ2
→ . . . (2)

where (l0, v0) = q, δi ∈ IR+, for all i ≥ 0. Since ρ is progressive, we have that
r =
∑i−1

j=0 δ j + δ for some 0 ≤ δ < δi and i ≥ 0. Consider the following ”augmented
run” ρ∗:

(l0, v∗0)
δ0
→ (l0, v∗0) + δ0

σ0
→ (l1, v∗1)

δ1
→ (l1, v∗1) + δ1

σ1
→ (l2, v∗2)

δ2
→ . . . (3)

where (∀i ≥ 0)(∀x ∈ X′ \ {y}) v∗i (x) = vi(x), and v∗0(y) = 0 and (∀i > 0), v∗i (y) =∑i−1
j=0 δ j. ρ∗ is a run ofAϕ (i.e., a run of the model forAϕ). Further, since the clock y

cannot be reset along ρ∗, it is easy to observe that r = v∗i (y) + δ for some 0 ≤ δ < δi

and i ≥ 0, which implies that py∈I ∈ Ṽ(πρ∗(r)).
By lemma 8 and lemma 4 we have that there exists run ρ′

(l0, v′0)
δ′0
→ (l0, v′0) + δ′0

σ0
→ (l1, v′1)

δ′1
→ (l1, v′1) + δ′1

σ1
→ (l2, v′2)

δ′2
→ . . . (4)

equivalent to ρ∗ such that for each i ≥ 0, v′i � v
∗
i , v′i + δ

′
i � v

∗
i + δi, and (li, v′i) and

(li, v′i)+δ
′
i are states in Md. This implies that for r′ =

∑i−1
j=0 δ

′
j+δ

′, where 0 ≤ δ′ < δ′i
and δ′ ∈ E, we have πρ∗(r) � πρ′(r′). Further, by Lemma 6 and (1) we have that
py∈I ∈ Ṽ(πρ′ (r′)), M, πρ′ (r′) |= β and (∀r′′ < r′) M, πρ′ (r′′) |= α.
Take now the following path π:

(l0, v′0), (l0, v′0) + δ′10, . . . , (l0, v
′
0) + δ′n0

0 , (l1, v
′
1), (5)

(l1, v′1) + δ′11, . . . , (l1, v
′
1) + δ′n1

1 , (l2, v
′
2), . . . ,

. . .

(li−1, v
′
i−1) + δ′1i−1, . . . , (li−1, v

′
i−1) + δ′ni−1

i−1 , (li, v
′
i), . . . ,

(li, v′i) + δ
′1
i , . . . , (li, v

′
i) + δ

′nδ′
i , . . . , (li, v′i) + δ

′ni
i , (li+1, v

′
i+1), . . .

10



with δ′i =
∑ni

j=0 δ
′ j
i , δ
′ j
i ∈ (0, 1), and for all j ∈ {0, . . . , ni − 1} either (li, v

′
i + δ

′ j
i ) �

(li, v′i + δ
′ j+1
i ) or (li, v′i + δ

j
i )

δ′
j+1
i −δ

′ j
i

→ d (li, v′i + δ
′ j+1
i ), and π(k) = πρ′ (r′) for

k =
{∑i−1

j=0 n j, δ′ = 0∑i−1
j=0 n j + nδ′ , δ′ > 0

By the construction of the path π, we have that π is a valid path of Md and py∈I ∈
Ṽd(π(k)) (note that py∈I ∈ Ṽ(πρ′(r′))). Now consider two cases: πρ(r′) is boundary
and πρ′(r) is not.
Let first assume that πρ′ (r′) is boundary. Then, by the definition of the valuation
function Ṽd we have that pb ∈ Ṽd(π(k)). Further, since (1) holds, by the induction
assumption, the construction of π and Lemma 6, we have that Md, π(k) |= cr(β)
and Md, π( j) |= cr(α) for all j < k. We have to now show that there exists state
s ∈ S such that s →y π(0). It is enough to take s = (l0, v

′) such that v′�X = v′0�X.
Therefore, by the definition of the satisfaction relation for ECTLKy formulae, we
conclude that Md, s |= cr(ϕ).
Assume now that πρ′(r′) is not boundary. Since interval I is of the form [a, b],
[a, b), (a, b], (a, b), [a,∞), or (a,∞) for a, b ∈ IN, we have that there exists r′′ < r′

such that πρ′(r′′) � πρ′ (r′). Further, since (1) holds, by Lemma 6 we have that
M, πρ′ (r′) |= α. Further, by the induction assumption and the construction of π we
have that Md, π(k) |= cr(β) and Md, π( j) |= cr(α) for all j ≤ k. We have to now show
that there exists state s ∈ S such that s →y π(0). It is enough to take s = (l0, v

′)
such that v′�X = v′0�X. Therefore, by the definition of the satisfaction relation for
ECTLKy formulae, we conclude that Md, s |= cr(ϕ).
• ϕ = E(αRIβ). The proof is similar to the above case.
• ϕ = Kiα. By Definition 5, we have that M, q |= Kiα iff

(∃q′ ∈ Q)(q ∼i q′ and M, q′ |= α) (6)

Let s′ = (l, v′) ∈ S be a state such that s′�X � q′. By Lemma 6 and (6) we have that
M, s′�X |= α. Thus, by induction we have that

Md, s′ |= cr(α) (7)

Now, let s = (l, v) ∈ S be a state such that s�X � q and v(y) = v′(y). It is easy to
see that s ∼i s′. Thus by Definition 7, the definition of cr, and (7) we have that
Md, s |= cr(Kiα).

• ϕ = DΓα. The proof is similar to the case for Ki.
• ϕ = EΓα. The proof is similar to the case for Ki.
• ϕ = CΓα. The proof is similar to the case for Ki.

(“Right-to-left”) It is obvious that the thesis holds for all the propositional vari-
ables and their negations. Next, assume that the hypothesis holds for all the proper
sub-formulae of ϕ. If ϕ is equal to either α ∧ β or α ∨ β, then it is easy to check that the
lemma holds. Consider ϕ to be of the following forms:
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• ϕ = cr(E(αUIβ)). Let q = (l, v) ∈ Q and s = (l, v′) ∈ S and (l, v′)�X � (l, v). Let
assume that Md, s |= Ey(cr(α)U(cr(β) ∧ py∈Ii ∧ (pb ∨ cr(α)))). By the definition of
the satisfaction relation for ECTLKy formulae, we have that

(∃s′ ∈ S )(s→y s′ and (∃π ∈ Π(s′))(∃m ≥ 0) (8)
[Md, π(m) |= (cr(β) ∧ py∈I ∧ (pb ∨ cr(α)))and (∀ j < m) Md, π( j) |= cr(α)])

Observe that π is of the following form:

(l0, v′0), (l0, v′0) + δ′10, . . . , (l0, v
′
0) + δ′n0

0 , (l1, v
′
1), (9)

(l1, v′1) + δ′11, . . . , (l1, v
′
1) + δ′n1

1 , (l2, v
′
2), . . . ,

. . .

(li−1, v
′
i−1) + δ′1i−1, . . . , (li−1, v

′
i−1) + δ′ni−1

i−1 , (li, v
′
i), . . . ,

(li, v′i) + δ
′1
i , . . . , (li, v

′
i) + δ

′nδ′
i , . . . , (li, v′i) + δ

′ni
i , (li+1, v

′
i+1), . . .

such that δ′ j
i ∈ (0, 1), for all j ∈ {0, . . . , ni − 1} either (li, v

′
i + δ

′ j
i ) � (li, v′i + δ

′ j+1
i ) or

(li, v′i + δ
j
i )

δ′
j+1
i −δ

′ j
i

→ d (li, v′i + δ
′ j+1
i ), v′0(y) = 0, (∀i > 0), v′i(y) =

∑i−1
j=0
∑ni

t=1 δ
t
j.

Consider the following “augmented” run ρ′:

(l0, v′0)
δ′0
→ (l0, v′0) + δ′0

σ0
→ (l1, v′1)

δ′1
→ (l1, v′1) + δ′1

σ1
→ (l2, v′2)

δ′2
→ . . . (10)

where δ′i =
∑ni

j=0 δ
′ j
i for i ≥ 0. Next, take the following run ρ:

(l0, v0)
δ′0
→ (l0, v0) + δ′0

σ0
→ (l1, v1)

δ′1
→ (l1, v1) + δ′1

σ1
→ (l2, v2)

δ′2
→ . . . (11)

where for all i ≥ 0, vi = v
′
i � X, and associate with ρ a dense path πρ : IR→ Q such

that πρ(r) = (li, vi) + δ, 0 ≤ δ ≤ δ′i , and r =
∑i−1

j=0 δ
′
j + δ.

Moreover, assume that π(m) � πρ(rm) for some rm =
∑i−1

j=0 δ
′
j + δ and 0 ≤ δ ≤ δ′i .

Since (8) holds, by the construction of the run ρ, the inductive assumption, and
Lemma 6 we have that

M, πρ(rm) |= β ∧ py∈I ∧ (pb ∨ α) (12)

and for all r′ ≤ rm−1 with πρ(rm−1) � π(m − 1)

M, πρ(r′) |= α (13)

Since (12) holds, we have that py∈I ∈ Ṽ(πρ(rm)). This implies that rm ∈ I. So, to
conclude that M, q |= E(αUIβ), it remains to show that for all rm−1 < r′′ < rm,
M, πρ(r′′) |= α holds.
Consider the following two cases:

– Let M, πρ(rm) |= α. Then, by the construction of the run ρ, we have that for all
rm−1 < r′′ < rm either πρ(rm) � πρ(r′′) or πρ(rm−1) � πρ(r′′). Since M, πρ(rm) |=
α and Condition (13) and Lemma 6 hold, we have that for all rm−1 < r′′ < rm,
M, πρ(r′′) |= α.
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– Let M, πρ(rm) |= pb. Then, by the construction of the run ρ, we have that for all
rm−1 < r′′ < rm, πρ(rm−1) � πρ(r′′). Since Condition (13) and Lemma 6 hold,
we have that for all rm−1 < r′′ < rm, M, πρ(r′′) |= α.

Therefore, we conclude that M, q |= E(αUIβ).
• ϕ = cr(E(αRIβ)). The proof is similar to the EUI case.
• ϕ = cr(Kiα). Let q = (l, v) ∈ Q and s = (l, v′) ∈ S and (l, v′)�X � (l, v). Let assume

that Md, s |= cr(Kiα). By the definition of the satisfaction relation for ECTLKy

formulae, we have that

(∃π ∈ Π(s0))(∃ j ≥ 0)(Md, π( j) |= cr(α) and s ∼d
i π( j)), (14)

By induction we have that M, π( j)�X |= α. Since s ∼d
i π( j), we have that s�X ∼i

π( j)�X. Next, since s�X � q, we have that s�X ∼i q. Therefore, we have that
q ∼i π( j)�X. Thus, we conclude that M, q |= Kiα.
• The cases for ϕ = cr(DΓα), ϕ = cr(EΓα), and ϕ = cr(CΓα) can be proven similarly

to the case Ki.

�

4.3 ECTLKy Bounded Model Checking

All the known BMC techniques are based on so called k−bounded semantics. In particu-
lar, BMC for ECTLKy is based on the k−bounded semantics for ECTLKy, the definition
of which we present below.

Bounded Semantics We start with some auxiliary notions. Let Md = (Σ∪E, S , s0,→d,

∼d
1, . . . ,∼

d
m, Ṽd) be a discretised model, and k ∈ IN+ a bound. As before, we denote by

→A the part of→d, where transitions are labelled with elements of Σ ∪ E, and by→y

the transitions that reset the clock y. A k−path π in Md is a finite sequence of states
(s0, . . . , sk) such that si →A si+1 for each 0 ≤ i < k, and Πk(s) denotes the set of all the
k-paths starting at s in Md. A k-model for Md is a structure Mk = (Σ∪E, S , s0, Pk, Py,∼

d
1

, . . . ,∼d
m, Ṽd), where Pk =

⋃
s∈S Πk(s) and Py = {(s, s′) | s→y s′ and s, s′ ∈ S }.

The satisfaction of the temporal operator EyR on a k-path in the bounded case de-
pends on whether or not π represents a loop. To indicate k-paths that can simulate loops,
we define a function loop : Pk 7→ 2IN by loop(π) = {i | 0 ≤ i ≤ k and π(k)→A π(i)}.

We can now define a bounded semantics for ECTLKy formulae. Let k ∈ IN+, Md be
a discretised model, Mk its k-model, and α, β ECTLKy formulae. Further, let Mk, s |= α
denote that α is true at the state s of Mk. The (bounded) satisfaction relation |= is defined
as follows:

Mk, s |= p iff p ∈ Ṽd(s),
Mk, s |= ¬p iff p < Ṽd(s),
Mk, s |= α ∨ β iff Mk, s |= α or Mk, s |= β,
Mk, s |= α ∧ β iff Mk, s |= α and Mk, s |= β,
Mk, s |= Kiα iff (∃π∈Πk(s0))(∃0≤ j≤k)(Mk, π( j) |= α and s ∼i π( j)),

13



Mk, s |= DΓα iff (∃π∈Pik(s0))(∃0≤ j≤k)(Mk, π( j) |= α and s ∼D
Γ
π( j)),

Mk, s |= EΓα iff (∃π∈Πk(s0))(∃0≤ j≤k)(Mk, π( j) |= α and s ∼E
Γ
π( j)),

Mk, s |= CΓα iff (∃π∈Πk(s0))(∃0≤ j≤k)(Mk, π( j) |= α and s ∼C
Γ
π( j)),

Mk, s |= Ey(αUβ) iff (∃s′ ∈ S )((s, s′) ∈ Py and (∃π ∈ Πk(s′))(∃0≤ j≤k)
(Mk, π( j) |= β and (∀0≤i< j) Mk, π(i) |= α)),

Mk, s |= Ey(αRβ) iff (∃s′ ∈ S )((s, s′) ∈ Py and (∃π ∈ Πk(s′))[(∃0≤ j≤k)
(Mk, π( j) |= α and (∀0≤i≤ j)Mk, π(i) |= β) or
(∀0≤ j≤k)(Mk, π( j) |= β and loop(π) , ∅)]).

Definition 9. An ECTLKy formula ϕ is valid in a k-model Mk (denoted Md |=k ϕ) iff
Mk, s0 |= ϕ, i.e., ϕ is true at the initial state of the k-model Mk.

We can now describe how the model checking problem (Md |= ϕ) can be reduced to
the bounded model checking problem (Md |=k ϕ).

Theorem 1. Let k ∈ IN+, Md be a discretised model, Mk its k-model, and ϕ an ECTLKy

formula. For any s in Md, Mk, s |= ϕ implies Md, s |= ϕ.
Proof By straightforward induction on the length of ϕ. �

Note that both the discretised model and its k-model are infinite. So, to perform
bounded model checking we have to consider a finite submodels of a k-model such that
an ECTLKy formula ψ holds in Md if and only if ψ holds in a finite submodel of Mk.

Definition 10. A s-submodel of k-model Mk = (Σ ∪ E, S , s0, Pk, Py,∼
d
1, . . . ,∼

d
m, Ṽd) is

a tuple M′(s) = (Σ ∪ E, S ′, s, P′k, P
′
y,∼

′
1, . . . ,∼

′
m, Ṽ

′
d), such that P′k ⊆ Pk, S ′ = {r ∈

S | (∃π ∈ P′k)(∃i ≤ k)π(i) = r} ∪ {s}, P′y ⊆ Py ∩ (S ′ × S ′), ∼′i=∼
d
i ∩(S ′ × S ′) for each

i ∈ {1, . . . ,m}, and Ṽ′d = Ṽd � S ′.

The bounded semantics for ECTLKy over a submodel M′(s) is defined as for Mk.
Moreover, the following theorem holds.

We will now introduce a definition of a function fk that gives a bound on the number
of k-paths in the submodel M′(s), and a function fk,y that gives a bound on the number
of elements of the set P′y in the submodel M′(s). We will show later that these bound
guarantee that the validity of ψ in M′(s) is equivalent to the validity of ψ in Mk. The
function fk : ECTLKy → IN is defined by:
• fk(p) = fk(¬p) = 0, where p ∈ PV′,
• fk(α ∨ β) = max{ fk(α), fk(β)},
• fk(α ∧ β) = fk(α) + fk(β),
• fk(Ey(αUβ)) = k · fk(α) + fk(β) + 1,
• fk(Ey(αRβ)) = (k + 1) · fk(β) + fk(α) + 1,
• fk(Yα) = fk(α) + 1, for Y ∈ {Ki,DΓ,EΓ},
• fk(CΓα) = fk(α) + k.

The function fk,y : ECTLKy → IN is defined by:
• fk,y(p) = fk,y(¬p) = 0, where p ∈ PV′,
• fk,y(α ∨ β) = max{ fk,y(α), fk,y(β)},
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• fk,y(α ∧ β) = fk,y(α) + fk,y(β),
• fk,y(Ey(αUβ)) = k · fk,y(α) + fk,y(β) + 1,
• fk,y(Ey(αRβ)) = (k + 1) · fk,y(β) + fk,y(α) + 1,
• fk,y(Yα) = fk,y(α), for Y ∈ {Ki,DΓ,EΓ,CΓ}.

Lemma 10. Let M′(s) and M′′(s) be two submodels of Mk with P′k ⊆ P′′k , P′y ⊆ P′′y , and
ψ an ECTLKy formula. If M′(s) |=k ψ, then M′′(s) |=k ψ.

Proof By straightforward induction on the length of ψ. �

Lemma 11. Mk, s |= ψ iff there is a submodel M′(s) of Mk with |P′k | ≤ fk(ψ) and
|P′y| ≤ fk,y(ψ) such that M′(s), s |= ψ.

Proof The ’right-to-left’ implication is straightforward. To prove ’left-to-right’ impli-
cation, we will use induction on the length of ψ.

The ’left-to-right’ implication follows directly for the propositional variables and
their negations. Assume that the hypothesis holds for all the proper sub-formulae of ψ,
and consider the following cases:

• Let ψ = α ∨ β and Mk, s |= α ∨ β. By the definition of the bounded semantics
we have that Mk, s |= α or Mk, s |= β. Hence, by induction we have that there is a
submodel M′(s) of Mk such that M′(s), s |= α and |P′k | ≤ fk(α) and |P′y| ≤ fk,y(α)
, or there is a submodel M′′(s) of Mk such that M′′(s), s |= β and |P′′k | ≤ fk(β)
and |P′′y | ≤ fk,y(β). Now, consider a submodel M′′′(s) of Mk such that P′′′k = P′k
and P′′′y = P′y if M′(s), s |= α, P′′′k = P′′k and P′′′y = P′′y otherwise. Thus, |P′′′k | ≤

max{ fk(α), fk(β)} and |P′′′y | ≤ max{ fk,y(α), fk,y(β)}. It is obvious that M′′′(s), s |= α
or M′′′(s), s |= β. Therefore, by the definition of the bounded semantics we have
that M′′′(s), s |= α ∨ β.
• Let ψ = α∧β and Mk, s |= α∧β. By the definition of the bounded semantics we have

that Mk, s |= α and Mk, s |= β. Hence, by induction we have that there is a submodel
M′(s) of Mk such that M′(s), s |= α and |P′k | ≤ fk(α) and |P′y| ≤ fk,y(α), and there is a
submodel M′′(s) of Mk such that M′′(s), s |= β and |P′′k | ≤ fk(β) and |P′′y | ≤ fk,y(β).
Now, consider the submodel M′′′(s) of Mk such that P′′′k = P′k ∪ P′′k and P′′′y =
P′y ∪ P′′y . It is easy to observe that |P′′′k | ≤ fk(α) + fk(β) and |P′′′y | ≤ fk,y(α) + fk,y(β).
So, by Lemma 10, we have that M′′′(s), s |= α and M′′′(s), s |= β. Therefore, by the
definition of the bounded semantics we have that M′′′(s), s |= α ∧ β.
• Let ψ = Ey(αUβ) and Mk, s |= Ey(αUβ). By the definition of the bounded semantics,

there is a state s′ ∈ S such that (s, s′) ∈ Py and there is a k−path π ∈ Πk(s′) such
that

(∃0 ≤ m ≤ k)(Mk, π(m) |= β and (∀0 ≤ i < m)Mk, π(i) |= α) (15)

Hence, by the inductive assumption, for all i such that 0 ≤ i < m there are submod-
els Mi(π(i)) of Mk with |Pi

k | ≤ fk(α) and |Pi
y| ≤ fk,y(α) and

Mi(π(i)), π(i) |= α (16)

and there is a submodel Mm(π(m)) of Mk with |Pm
k | ≤ fk(β) and |Pm

y | ≤ fk,y(β) and

Mm(π(m)), π(m) |= β (17)
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Consider a submodel M′(s) of Mk such that P′k =
⋃m

i=0 Pi
k ∪ {π} and P′y =

⋃m
i=0 Pi

y ∪

{(s, s′)}. Thus, by the construction of M′(s), we have that (s, s′) ∈ P′y and π ∈

P′k. Therefore, since conditions (15), (16), and (17) hold, by the definition of the
bounded semantics, we have that M′, s |= Ey(αUβ) and |P′k | ≤ k · fk(α) + fk(β) + 1
and |P′y| ≤ k · fk,y(α) + fk,y(β) + 1.
• Let ψ = Ey(αRβ) and Mk, s |= Ey(αRβ). By the definition of the bounded semantics,

there is a state s′ ∈ S such that (s, s′) ∈ Py and there is a k−path π ∈ Πk(s′) such
that

(∃0 ≤ j ≤ k)(Mk, π( j) |= α and (∀0 ≤ i ≤ j)Mk, π(i) |= β) or (18)
(∀0 ≤ j ≤ k)(Mk, π( j) |= β and loop(π) , ∅) (19)

Let us consider the two cases. First, assume that condition (18) holds. Then, by the
inductive assumption, for all i such that 0 ≤ i ≤ j there are submodels M i(π(i)) of
Mk with |Pi

k | ≤ fk(β) and |Pi
y| ≤ fk,y(β) and

Mi(π(i)), π(i) |= β (20)

and there is a submodel M
′′

(π(m)) of Mk with |P
′′

k | ≤ fk(α) and |P
′′

y | ≤ fk,y(α) and

M
′′

(π(m)), π(m) |= α (21)

Consider the submodel M′(s) of Mk such that P′k =
⋃ j

i=0 Pi
k ∪ P

′′

k ∪ {π} and P′y =⋃ j
i=0 Pi

y ∪ P′′y ∪ {(s, s′)}. Thus, by the construction of M′(s), we have that (s, s′) ∈
P′y and π ∈ P′k. Therefore, since the conditions (18), (20) and (21) hold, by the
definition of the bounded semantics we have that M′(s), s |= Ey(αRβ) and |P′k | ≤
(k + 1) · fk(β) + fk(α) + 1 and |P′y| ≤ (k + 1) · fk,y(β) + fk,y(α) + 1.
Assume now that condition (19) holds. Then, by the inductive assumption, for all
j such that 0 ≤ j ≤ k there are submodels M j(π( j)) of Mk with |P j

k | ≤ fk(β) and
|P j
y| ≤ fk,y(β) and

(M j(π( j)), π( j) |= β) (22)

Consider the submodel M′(s) of Mk such that P′k =
⋃k

j=0 P j
k∪{π} and P′y =

⋃k
i=0 Pi

y∪

{(s, s′)}. Thus, by the construction of M′(s), we have that (s, s′) ∈ P′y and π ∈ P′k.
Therefore, since conditions (18) and (22) hold, by the definition of the bounded
semantics we have that M′(s), s |= Ey(αRβ) and |P′k | ≤ (k+ 1) · fk(β)+ fk(α)+ 1 and
|P′y| ≤ (k + 1) · fk,y(β) + fk,y(α) + 1.
• Let ψ = Kiα and Mk, s |= Kiα. By the definition of the bounded semantics, we have

that there exists π ∈ Πk(s0) such that

(∃0 ≤ j ≤ k)(s ∼i π( j) and π( j) |= α) (23)

By the inductive assumption there is a submodel M′(π( j)) of Mk with |P′k | ≤ fk(α)
and |P′y| ≤ fk,y(α) such that M′(π( j)), π( j) |= α. Consider a submodel M′′(s) of Mk

such that P′′k = P′k ∪ {π} and P′′y = P′y. Since π ∈ P′′k , s ∈ S ′′, and condition (23)
holds, by the construction of M′′(s) and the definition of the bounded semantics,
we have that M′′, s |= Kiα and |P′′k | ≤ fk(α) + 1 and |P′′y | ≤ fk,y(α).

16



• Let ψ = EΓα and Mk, s |= EΓα. By the definition of the bounded semantics, we
have that there exists π ∈ Πk(s0) such that

(∃0 ≤ j ≤ k)(Mk, π( j) |= α and s ∼E
Γ π( j)) (24)

By the inductive assumption there is a submodel M′(π( j)) of Mk with |P′k | ≤ fk(α)
and |P′y| ≤ fk,y(α) such that M′(π( j)), π( j) |= α. Consider a submodel M′′(s) of Mk

such that P′′k = P′k ∪ {π} and P′′y = P′y. Since π ∈ P′′k , s ∈ S ′′, and condition (24)
holds, by the construction of M′′(s) and the definition of the bounded semantics,
we have that M′′(s), s |= EΓα and |P′′k | ≤ fk(α) + 1 and |P′′y | ≤ fk,y(α).

• Let ψ = DΓα and Mk, s |= DΓα. This case can be proven similarly to the two above.
• Let ψ = CΓα and Mk, s |= CΓα. Below, we only prove that fk(CΓα) = fk(α) + k is

a sufficient number of paths in a submodel M′(s) validating ϕ and that fk,y(CΓα) =
fk,y(α). The actual construction of M′(s) can be given similarly to the case ψ = Kiα

and ψ = α ∨ β.
Note that CΓα =

∨
1≤i≤k(EΓ)iα, fk((EΓ)1α) = fk(EΓα) = fk(α)+1, and fk,y((EΓ)1α) =

fk,y(EΓα) = fk,y(α). It is easy to show, by induction on i, that fk((EΓ)iα) = fk(α) + i
and fk,y((EΓ)iα) = fk,y(α), for i ∈ {1, . . . , k}. Therefore, fk(ψ) = fk(

∨
1≤i≤k(EΓ)iα) =

max{ fk((EΓ)1α), . . . , fk((EΓ)kα)} = fk((EΓ)kα) = fk(α) + k, and
fk,y(ψ) = fk,y(

∨
1≤i≤k(EΓ)iα) = max{ fk,y((EΓ)1α), . . . , fk,y((EΓ)kα)} = fk,y((EΓ)kα) =

fk,y(α).

�

From Lemma 11 we can now derive the following.

Corollary 1. Mk, s0 |= ψ iff there is a submodel M′(s0) of Mk with |P′k | ≤ fk(ψ) and
|P′y| ≤ fk,y(ψ) such that M′(s0), s0 |= ψ.

Proof It follows from the definition of bounded semantics and Lemma 11, by using
s = s0. �

Theorem 2. Let Md be a discretised model, and ψ an ECTLKy formula. If there exist
k ∈ IN+ and s0-submodel M′(s0) of k-model Mk with P′k ≤ fk(ψ) and |P′k,y| ≤ fk,y(ψ)
such that M′(s0) |=k ψ, then Md |= ψ.

Proof Follows from Theorem 1 and Lemma 11. �

Having defined the bounded semantics, we can easily translate the model checking
problem for ECTLKy to the problem of satisfiability of a Boolean formula that encodes
all the discretised model for an ECTLKy formula under consideration and an appropri-
ate fragments of the considered discretised models. The translation is presented in the
next section.
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4.4 Translation to Boolean formulae

The main idea of BMC for ECTLKy consists in translating the model checking problem
for ECTLKy into the satisfiability problem of a propositional formula. Namely, given an
ECTLKy formula ψ, a discretised model Md, and a bound k ∈ IN+, this proposition for-
mula, denoted by [Md, ψ]k, if of the form: [Mψ,s0

d ]k∧ [ψ]Mk . The first conjunct represents
possible s0−submodels of Md that consist of fk(ψ) k−paths of Md, whereas the second
conjunct encodes a number of constraints that must hold on these submodels for ψ to be
satisfied. Once this translation is defined, checking satisfiability of an ECTLKy formula
can be done by means of a SAT-checker. In order to define [Md, ψ]k, we proceed as
follows.

Let us assume that each state s of the discretised model Md is encoded by a bit-
vector whose length, say b, depends on the number of locations, the number of clocks,
and the bound k ∈ IN+. So, each state s of Md can be represented by a vector w =
(w[1], . . . , w[b]) (called global state variable), where each w[i], for i = 1, . . . , b, is a
propositional variable (called state variable). Notice that we distinguish between states
s encoded as sequences of 0’s and 1’s and their representations in terms of proposi-
tional variables w[i]. A finite sequence (w0, . . . , wk) of global state variables is called a
symbolic k-path. In general, we need to consider not just one but a number of symbolic
k-paths. This number depends on the formula ψ under investigation, and it is returned as
the value fk(ψ) of the function fk. The j-th symbolic k-path is denoted by w0, j, . . . , wk, j,
where wi, j are global state variables for 1 ≤ j ≤ fk(ψ), 0 ≤ i ≤ k. For two global state
variables w, w′, we define the following propositional formulae:

• Is(w) is a formula over w, which is true for a valuation sw of w iff sw = s.
• p(w) is a formula over w, which is true for a valuation sw of w iff p ∈ Vd(sw), where

p ∈ PV′,
• Hi(w, w′) is a formula over two global state variables w = (l, v), w′ = (l′, v′), which

is true for valuations sl of l, sl′ of l′, sv of v, and sv′ of v′ iff li(sl) = li(sl′) and
sv � sv′ (encodes equivalence of local states of agent i).

• R(w, w′) is a formula over w, w′, which is true for two valuations sw of w and sw′ of
w′ iff sw →A sw′ (encodes the non-resetting transition relation of Md),
• Ry(w, w′) is a formula over w, w′, which is true for two valuations sw of w and sw′

of w′ iff sw →y sw′ (encodes the transitions resetting the clock y).

The propositional formula [Md, ψ]k is defined over state variables w0,0, wn,m, for
0 ≤ m ≤ k and 1 ≤ n ≤ fk(ψ). We start off with a definition of its first conjunct, i.e.,
[Mψ,s0

d ]k, which constrains the fk(ψ) symbolic k-paths to be valid k-path of Mk. Namely,

[Mψ,s0

d ]k := Is0 (w0,0) ∧
fk(ψ)∧

n=1

k−1∧

m=0

R(wm,n, wm+1,n)

The second conjunct, i.e., the formula [ψ]Mk = [ψ][0,0]
k , is inductively defined as fol-

lows:
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[p][m,n]
k := p(wm,n),

[¬p][m,n]
k := ¬p(wm,n),

[α ∧ β][m,n]
k := [α][m,n]

k ∧ [β][m,n]
k ,

[α ∨ β][m,n]
k := [α][m,n]

k ∨ [β][m,n]
k ,

[Ey(αUβ)][m,n]
k :=

∨ fk(ψ)
i=1 (Ry(wm,n, w0,i) ∧

∨k
j=0([β][ j,i]

k ∧
∧ j−1

l=0 [α][l,i]
k )),

[Ey(αRβ)][m,n]
k :=

∨ fk(ψ)
i=1 (Ry(wm,n, w0,i) ∧ (

∨k
j=0([α][ j,i]

k ∧
∧ j

l=0[β][l,i]
k )

∨
∧k

j=0[β][ j,i]
k ∧

∨k
l=0 R(wk,i, wl,i))),

[Klα]
[m,n]
k :=

∨ fk(ψ)
i=1 (Is0 (w0,i) ∧

∨k
j=0([α][ j,i]

k ∧ Hl(wm,n, w j,i))),

[DΓα]
[m,n]
k :=

∨ fk(ψ)
i=1 (Is0 (w0,i) ∧

∨k
j=0([α][ j,i]

k ∧
∧

l∈Γ Hl(wm,n, w j,i))),

[EΓα]
[m,n]
k :=

∨ fk(ψ)
i=1 (Is0 (w0,i) ∧

∨k
j=0([α][ j,i]

k ∧
∨

l∈Γ Hl(wm,n, w j,i))),

[CΓα]
[m,n]
k := [

∨k
i=1(EΓ)iα][m,n]

k .

Lemma 12. Let Md be discretised model, Mk its k-model, and ψ an ECTLKy formula.
For each state s of Md, the following holds: [Mψ,s

d ]k ∧ [ψ]Mk is satisfiable iff there is a
submodel M′(s) of Mk with |P′k | ≤ fk(ψ) and |P′y| ≤ fk,y(ψ) such that M′(s), s |= ψ.

Proof (=>) Let [Mψ,s
d ]k ∧ [ψ]Mk be satisfiable. By the definition of the translation, the

propositional formula [ψ]Mk encodes all the sets of k−paths of size fk(ψ) which satisfy
the formula ψ and all the sets of transitions resetting the clock y of size fk,y(ψ) . By the
definition of the unfolding of the transition relation, the propositional formula [Mψ,s]k

encodes fk(ψ) symbolic k-paths to be valid k−paths of Mk. Hence, there is a set of
k−paths in Mk, which satisfies the formula ψ of size smaller or equal to fk(ψ), and there
is a set of transitions resetting the clock y of size fk,y(ψ). Thus, we conclude that there
is a submodel M′(s) of Mk with |P′k | ≤ fk(ψ) and |P′y| ≤ fk,y(ψ) such that M′(s), s |= ψ.

(<=) The proof is by induction on the length of ψ. The lemma follows directly for
the propositional variables and their negations. Consider the following cases:

• For ψ = α ∨ β, α ∧ β, or the temporal operators the proof is like in [13].
• Let ψ = Klα. If M′(s), s |= Klα with |P′k | ≤ fk(Klα) and |P′y| ≤ fk,y(Klα), then

by the definition of bounded semantics we have that there is a k−path π such that
π(0) = s0 and (∃ j ≤ k) s ∼l π( j)) and M′(s), π( j) |= α. Hence, by induction we
obtain that for some j ≤ k the propositional formula [α][0,0]

k ∧ [Mα,π( j)]k is satisfi-
able. Let ii = fk(α) + 1 be the index of a new symbolic k−path which satisfies the
formula Is0 (w0,ii). Therefore, by the construction above, it follows that the proposi-
tional formula Is0 (w0,ii) ∧

∨k
j=0

(
[α][ j,ii]

k ∧ Hl(w0,0, w j,ii)
)
∧ [MKlα,s]k is satisfiable.

Therefore, the following propositional formula is satisfiable:

∨

1≤i≤ fk(Klα)

(
Is0 (w0,i) ∧

k∨

j=0

(
[α][ j,i]

k ∧ Hl(w0,0, w j,i)
)
∧ [MKlα,s]k

)
.

Hence, by the definition of the translation of an ECTLKy formula, the above for-
mula is equal to the propositional formula [Klα][0,0]

k ∧ [MKlα,s]k.
• The other proofs are similar.
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Theorem 3. Let Md be a discretised model, and ψ an ECTLKy formula. If there exists
k ∈ IN+ such that [ψ]Mk ∧ [Mψ,s0

]k is satisfiable, then Md |= ψ .

Proof Follows from Theorem 2 and Lemma 12. �

5 A real-time alternating bit transmission problem

To exemplify the theoretical concepts of the previous sections we analyse a real-time
version of one of the variants of the alternating bit protocol. In the original formula-
tion [7] two agents attempt to transmit information over an unreliable communication
channel, which they have access to. Sender S starts sending the bit to receiver R. R
is initially silent but as soon as it receives the bit from S, it starts sending acknowl-
edgments back to S. As soon as S receives one of these acknowledgments, it stops
sending the bit, the system is reset and a new bit is sent. Under these conditions it can
be checked automatically [14] that whenever S receives an acknowledgment it then
knows (in the formal epistemic sense) that R knows the value of the bit. Consider now
one of the variants analysed in [9] where R may (erroneously) send acknowledgments
without having received the bit first. Intuitively in this case, given that the protocol of
execution is commonly known in interpreted systems, the property above will no longer
hold; indeed this can also be checked automatically [14].

We extend the scenario above by adding the clock expressions. Assume that each
agent has two possibly faulty communication channels to choose from to send bits
or acknowledgments. In order to optimise the performance of the transmission both
agents concurrently run a channel monitoring service in the background. To this aim
they regularly send each other control bits and keep track of the time elapsed since the
receipt of a control bit from the other party. The agents send the information bit on the
channel that has demonstrated to be in the better working condition, i.e., the one that
has recently been able to transmit the control bit from the other party.

To formalise the above we use a network of diagonal timed automata consisting
of an automaton for S (see Figure 2) and an automaton for R (see Figure 3). S can
be in 11 different local states: Decide (“S selects which bit will be sent”), 0-ctr-bit
and 1-ctr-bit (“S sends a control bit and listens to R’s control bit”), 0-select and 1-
select (“S selects the channel to use to send bit 0 (1), or he sends a control bit”), 0-
channel-1 and 0-channel-2 (“S sends bit 0 through channel 1 (2)”), 1-channel-1 and
1-channel-2, (“S sends bit 1 through channel 1 (2)”), 0-ack and 1-ack (“S has received
an acknowledgement”). S can perform independently the following actions: 0-bit, 1-bit
(“bit 0 (1) is sent”), scbs-1- f ail, scbs-2- f ail (“a control bit is sent to a faulty channel 1
(2)”), s-send- f ail (“bit 0 or 1 is sent to a faulty channel”), nothing, and next-bit whose
interpretation is obvious. The remaining actions are synchronised with R.
R can be in 10 different local states: wait (“R is listening to the channels”), ctr-

bit (“R sends a control bit, or he sends a faulty acknowledgement”), r0 and r1 (“R
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Decide

0-ctr-bit

0-select

0-channel-1 0-channel-2

0-ack

1-ctr-bit

1-select

1-channel-1 1-channel-2

1-ack

next-bit next-bit

0-bit 1-bit

scbr-1
x1 := 0

scbr-2
x2 := 0

scbr-1
x1 := 0

scbr-2
x2 := 0

s-select-1
x1 < x2 + (t1 + t2)

s-select-2
x2 < x1 + (t1 + t2)

0-send-ack

s-select-1
x1 < x2 + (t1 + t2)

s-select-2
x2 < x1 + (t1 + t2)

1-send-ack

0-send
s-send-fail

0-send

s-send-fail

1-send

s-send-fail

1-send

s-send-fail

scbs-1, x = t1, x := 0scbs-2, x = t2, x := 0

scbs-1-fail
x = t1, x := 0

scbs-2-fail
x = t2, x := 0

scbs-2
x = t1,x := 0

scbs-1
x = t2, x := 0

scbs-1-fail
x = t1,x := 0

scbs-2-fail
x = t2,x := 0

scbs-1, x = t1, x := 0scbs-2, x = t2, x := 0

scbs-1-fail
x = t1, x := 0

scbs-2-fail
x = t2, x := 0

scbs-1
x = t1, x := 0
scbs-2

x = t2,x := 0

scbs-1-fail
x = t1,x := 0

scbs-2-fail
x = t2,x := 0

nothing nothing

Fig. 2. An automaton for Sender

has received bit 0 (1)”), 0-select and 1-select (“R selects the channel for the ack”), 0-
channel-1, 0-channel-2, 1-channel-1 and 1-channel-2, (“R sends an ack on channel 1
(2).”). R can perform independently the following actions: scbr-1- f ail, scbr-2- f ail (“a
control bit is sent to a faulty channel 1 (2)”), r-send- f ail (“an ack is sent to a faulty
channel”). We refer to Figures 2, 3 for a pictorial representation.

Further, S uses 3 clocks (x, x1, x2,), and R three more (y, y1, y2). Control bits are
sent at regular intervals: t1 for channel 1 and t2 for channel 2; the clocks x and y are
used for this purpose. Clocks xi and yi measure the time since a control bit has been
received; xi gets reset when S receives a control bit on channel i, likewise for yi for R.
When sending bits (either information bits of acknowledgments) each agent evaluates
the following two clock expressions z1 − z2 < (t1 + t2) and z2 − z1 < (t1 + t2) for
z ∈ {x, y}. When the former expression is true, channel 1 is chosen, when the latter
is true, channel 2 is chosen. Intuitively the above guarantees that the channel that has
been demonstrated to be alive more recently gets selected. Using the threshold t1 + t2
enables an agent not to switch channel unnecessarily often (for instance simply because
they are desynchronised). Note that ease with which the use of a clock difference allows
us to implement real-time channel selection without having a large state space for the
automata in question.

The automata run in parallel and synchronise through the actions: scbs-1, scbs-2,
scbr-1, and scbr-2 (“send a control bit via channel 1 (2)”), 0-send, and 1-send (“send
bit 0 (1)”), 0-send-ack, and 1-send-ack (“ send an acknowledgement to bit 0 (1)”).
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Given the above, one can construct the automaton ABT P that describes the whole
alternating bit protocol running in real time as well as the set of traces generated by it.
In our approach this is done automatically by the bounded model checking implemen-
tation.

Now, assume the following set of propositional variables: PV = {recack,bit0}, and
the following usual interpretation for the proposition variables in PV: VS(0-channel-
1) = VS(0-channel-2) = VS(0-ack) = bit0, andVS(0-ack) = VS(1-ack) = recack.

wait

ctr-bit

r0

0-select

0-channel-1 0-channel-2

r1

1-select

1-channel-1 1-channel-2

scbs-1
y1 := 0

scbs-2
y2 := 0

scbr-1, y = t1, y := 0scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

0-send 1-send

scbs-1
y1 := 0

scbs-2
y2 := 0

scbs-1
y1 := 0

scbs-2
y2 := 0

scbr-1, y = t1, y := 0scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

scbr-1, y = t1, y := 0scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

r-select-1
y1 < y2 + (t1 + t2)

r-select-2
y2 < y1 + (t1 + t2)

r-select-1
y1 < y2 + (t1 + t2)

r-select-2
y2 < y1 + (t1 + t2)

0-send-ack

r-send-fail

0-send-ack

r-send-fail

1-send-ack

r-send-fail

1-send-ack

r-send-fail

0-send-ack

0-send-ack

1-send-ack

1-send-ack

scbr-1, y = t1, y := 0
scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

scbr-1, y = t1, y := 0
scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

scbr-1, y = t1, y := 0
scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

scbr-1, y = t1, y := 0
scbr-2, y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

Fig. 3. An automaton for Receiver

The typical specification properties that one may be interested in checking for the
example above are the following: 1) “forever in the future from t1 if an ack has been
received by S and the value of the bit is 0, then R knows the bit is equal to 0” and 2)
“forever in the future from t1 if an ack has been received by S and the value of the bit
is 0, then S knows that R knows the bit is equal to 0.”

By means of an implementation of the technique above we were able to check that
the properties above are not satisfied (as intuitively is the case given R’s possible be-
haviour). More precisely, we can check that the negations of the properties above are
true, i.e., the following formulas are satisfied on the model forABT P:

ϕ1 = EF[t1,∞](reckack ∧ bit0 ∧ KR(bit0)), and
ϕ2 = EF[t1,∞](reckack ∧ bit0 ∧ KSKR(bit0)).
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To verify satisfaction of ϕ1 over the model for ABT P, 2 paths of length 11 were
required. To do this we checked satisfaction of a Boolean formula that encoded the
translation of the formula ϕ1 and an appropriate fragments of the model for ABT P as
described in [10]. The formula in question consists of 125260 variables and 258821
clauses; our implementation needed 19.6 second and 18.7 MB memory to produce it.
Satisfaction itself was checked by MiniSat [6], a mainstream SAT solver, that required
4.0 seconds and 19.9 MB memory to return satisfiable as the answer.

Similarly satisfaction of ϕ2 required 3 paths of the length 11. The Boolean formula
representing the bounded model checking test consists of 213034 variables and 471494
clauses; our implementation needed 1364.4 second and 31.4 MB memory to produce it.
Given the formula MiniSat needed 320.0 seconds and 81.8 MB memory to return satis-
fiable as the answer; for reference the experiments were performed on an AMD Athlon
XP 1800 (1544 MHz), 768 MB main memory, running Linux with Kernel 2.6.15.

We are not able to compare these results to other tools as we are not aware of
any other implementation available that is capable of a real-time epistemic check for
(diagonal and non-diagonal) automata.

6 Conclusions
Model checking real-time in AI and MAS is still in its infancy. In [17] a first proposal
was made for a bounded model checking algorithm for real-time epistemic properties
based on non-diagonal automata semantics. In this paper we have tried to extend that
work by allowing the expressivity of clock differences. We have proposed a syntax, se-
mantics for the logic, as well as a bounded model checking method, and showed experi-
mental results of a preliminary implementation for a real-time version of the alternating
bit protocol.
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