
Scalable Signaling Underlay for Overlay Networks
Yangcheng Huang, Saleem N. Bhatti

Y.Huang@cs.ucl.ac.uk, S.Bhatti@cs.ucl.ac.uk
Networks Research Group, Department of Computer Science

University College London, Gower Street, London WC1E 6BT, UK

Abstract - This paper presents the design of a scalable
decentralized signaling underlay infrastructure, which features
a DHT based management information storage and query-based
state lookup mechanism. The signaling underlay is aimed to
apply a decentralized “peer-to-peer” style searching and
discovering engine into the management and control plane of the
overlay network, including grid networks and p2p applications,
to facilitate deployment of QoS service.

1. INTRODUCTION

Over the years, there has been an increasing desire that the
Internet be used to carry data flows with specific QoS
constraints. However, this requires all network elements on a
path to cooperate to provide such a “better-than best-effort”
service. The networks would require a tremendous amount of
state information to provision, maintain, validate, and bill for
these new services, across heterogeneous networks and
devices with different management capabilities. Such a
requirement demands more research effort on network
management and control issues, especially on signaling
between elements, to control and distribute network state.

This paper presents the design of a scalable decentralized
signaling underlay infrastructure, which features distributed
hash table (DHT) based management information storage and
query-based state information lookup mechanism. This
proposed signaling infrastructure applies a decentralized
peer-to-peer (p2p) style searching and discovering engine
into the management and control plane of the overlay
network, including grid networks and p2p applications, to
facilitate deployment of QoS services.

The paper is arranged as follows. In section 2, we discuss the
design principles of the signaling underlay. Then in section 3
we present details of the proposed infrastructure and related
mechanisms. In section 4, we give some implementation
details, and in section 5, we show some preliminary
experimental results. We introduce related work in section 6,
and draw conclusions and list future work in section 7.

2. SCALABLE SIGNALING UNDERLAY
In this section, we present motivating factors for scalable
signaling functionality, and from them extract requirements
and design principles for a scalable signaling underlay.

2.1 Problems with overlay networks

In recent years, peer-to-peer overlay networks have received
much attention, especially in decentralized data-sharing and
discovery ([2] [4] [8] [9]). The network overlay abstraction
provides flexible and extensible application-level
management techniques that can be easily and incrementally
deployed despite the underlying network. However, there are
several issues to be addressed.

Despite performing suitably in scalability and deployment,
overlay solutions make data-sharing and state management
more complex, resulting in additional complications in
developing such systems. The complexity of managing a
network increases dramatically as the number of services and
the number and complexity of devices in the network
increases. Also, although an overlay network may facilitate
end-to-end management and control, it still needs efficient
skills to manage underlying network resources.

2.2 Design Principles

Generally, the signaling underlay should be applicable in a
very wide range of scenarios and at the same time be simple
in implementation and lightweight in resource consumption.
This section will analyze such requirements in detail.

The design principles include:
• Decentralized architecture. Traditionally, the

common framework based on a centralized approach
is straightforward but not proved to scale well;
although a distributed approach with a hierarchical
architecture appears flexible, conceptually, it scales
only in number of nodes, not at the network level.
That is, inside network domains, a distributed
framework may work well but with the cost of
increased complexity in measurement and control.
However, a distributed approach is not satisfactory at
the domain level, lacking efficient cross-domain
network measurement and management support. For
a cross-domain signaling underlay, a decentralized
architecture seems the sensible choice.

• Modularity and isolation. To work in multiple
scenarios, the system must be designed modularly.
With such a layered, modular design (Figure 1), the
system can adapt itself to different scenarios, with the
least modification of kernel signaling function design,
and be more flexible in resource consumption, self

overload and effects to its host environments. In
addition, the system should achieve isolation in two
aspects. The signaling messages should be separated
from data, to be independent of detailed applications
and work in different scenarios; it should also be
separated from control information and protocols;
that is, signaling elements are not expected to do
resource allocation as controllers or agents; their
functionality should focus on cooperation and
coordination between network entities.

Figure 1. Modular system design.

• Data integrity. The signaling system aims to manage
changing network state information, so it is necessary
to maintain state integrity in signaling by updating
explicitly, including deleting state information that is
obsolete, refreshing state information in case of state
changes (caused by failure or nodes leaving and
joining). Such an updating process should be as quick
as possible, especially for mobile nodes, in order not
to interrupt services.

• Security. There are several security issues that need to
be addressed.
(1) Transparency in signaling. Network (domain)

topology and structure information should be
hidden from end nodes (users) and from other
network domains. During the forwarding
process, a signaling protocol should keep route
information transparent to unrelated nodes.

(2) Authentication. There should be authentication
methods to identify signaling peers with each
other, with ID and key management mechanisms,
such as shared secret or public key methods.

Note that, we do not consider specifically security
issues in this paper.

• Scalability. The system should scale to Internet scale
deployment, and in resource consumption, with
minimal effects under self-overload to its host
environment.

• Resilience. The signaling system should be resilient
in case of internal failure and external failure. Here,
internal failure is caused by node changes (node
joining and leaving) or malfunction behaviour, whilst

external failure is from host environments and
network connections. Currently, most peer-to-peer
systems only address internal failure in resilience and
management issues [2, 4 and 9], while this research
aims to achieve both. In addition, the signaling
elements should respond to changes and refresh
relevant state information quickly to localize update
effects and reduce updating traffic overhead.

Given the design principles above, we now present our
design of a signaling underlay.

3. ARCHITECTURE

There are two main components in the system: Distributed
Hash Table (DHT) and query engine (Figure 2).

Figure 2. Architecture of Signaling Underlay.

An instance of each DHT and query engine component is run
on each participating signaling point.

3.1 Research Scope

This research focuses on the control of the underlay network
management to provide “better-than best-effort" network
service for the overlay network. Generally, three issues are of
concern: network measurement (state collection), signaling
and state control. This paper only discusses the signaling part.
Resource control (resource allocation and re-allocation) and
network measurement methods are not considered here.

We assume that service providers are ready to implement
such a signaling infrastructure, since different administrative
domains may apply different security policy and deny the
signaling flow by default.

3.2 Definitions

Signaling Point (SP) is defined as any network element that
runs the signaling process or any network element that is
involved in the signalling.

Signaling Forwarding Point (SFP) is defined as the
signaling entity whose role is to receive signaling messages
from another entity and then forward it to the next entity,
according to a node selection algorithm.

Application Oriented Interface Definition

Signalling Kernel Function Definition

Host Specific Supporting Module Definition

Low
Bandwidth
Supporting

Module

(Ultra)
Broadband
Supporting

Module

Wireless
Supporting

Module

Data Storage

DHT Manager

Query Exection
Engine

Query Optimizer

DHT
Operation

Query Engine

DHT

Query Analyzer

Overlay Network Applications User Space

Signaling Initiating Point (SIP) is defined as the signaling
entity that initiates the signaling; an end-system or a router.
Signaling Sink Point (SSP) is the entity where the signaling
process terminates.

Signaling Path is the path along which the signaling
messages transit; signaling packets can be delivered along a
data path, or with its own routing policy.

Signaling Underlay is the collection of SPs, SFPs, SIPs,
SSPs and the network paths that together comprise our
signalling system. The signaling entities transmit signaling
message through underlying network. Logically these entities
form a virtual peer-to-peer-style signaling layer, possibly
with different topology from lower network layer, and across
different administrative domains (AS) and technology
domains (wireless or wired network).

3.3 DHT Based State Storage

Distributed Hash Tables (DHTs) have been proved to be an
effective way for decentralized information storage, e.g. CAN
[8]. In the following, we focus only on our DHT design.

In every signaling point (SP), there are one or more DHTs
with the data structure shown in Table 1. In the KEY field,
we define two types of data: IP-pairs and IP-sub-network. In
the VALUE field of the DHT are (1) values of link
characteristics, if the targeted link is in local domain; (2)
another SPs’ ID (we use an IP address for simplicity for now),
which holds the desired data, if the targeted link is in another
domain. Thus, in the DHTs, there are two types of items. One
is Data_Item, which stores the desired data, such as link/path
characteristics; the other is Pointer_Item which stores a
pointer to (the location) of the desired data.

To illustrate, we explain this in the following two examples.
D (key, value) = ((128.16.64.6, 128.16.64.7), (60,100))

The above value means, the characteristic of the link (or path)
from node (128.16.64.6) to node (128.16.64.7) is 60Mbit/s
(bandwidth) with (maximum) delay 60 ms.
D (key, value) = ((202.16.1.0, 202.16.6.0), (202.16.1.1))

This means, the network state information can be found in
host/server with the IP address 202.16.1.1.
In order to differentiate these two types of values and also to
label the content of value field, we specify a DATA_TYPE
field as below. The first bit, Data_Flag, is 0 if the VALUE
field stores a pointer to another SP. (POINTER_ITEM, IP
address of other SP in this case); if data_flag is 1, the
Content_Flag denotes what kind of content is stored in the
VALUE field. For example, we can define 0000011 as
Bandwidth_Delay, which means the value field stores
bandwidth and delay information.

_

_ _

1 0 0 0 0 0 1 1

DATA TYPE

Data Flag Content Flag

The structure of the DHT is as follows.

Node I

DATA_TYPE KEY VALUE

10000011 (128.16.64.6,
128.16.64.7) (60, 100)

10000011 (128.16.64.45,
128.16.64.46) (54, 10)

… … …

0xxxxxxx (10.1.24.0,10.1.24.0) (10.1.24.238)

0xxxxxxx (20.16.1.0,20.16.6.0) (20.16.1.1)

Table.1 Data Structure used in DHT

In our future design, variable-length data structures will be
defined to contain different types of signaling data.

3.4 State Query Mechanism

To discover network state information across domains, we
propose a light-weight searching/discovery mechanism.

3.4.1 State Query

Since network state is stored and managed in a decentralized
way, we need to send queries to the related signaling points
(SPs) in the domain A if we want to know the network
characteristics (state) of A. When a SP receives a query, it
will look up its own data first with our nearest-matching
algorithm a shown in Figure 3.
The algorithm has three possible results.
(1) The desired data (or pointer to the SP where the desired
data is stored) is found by an exact match between the KEY
field of the DHT with the network values (e.g. IP addresses);
(2) By nearest-match, the algorithm returns a pointer to the
SP where the desired data can most likely be found (or the SP
which is more likely to know where is the desired data); here
we use, SPs with “similar” IP addresses, such as 10.13.1.21
and 10.13.4.2, are mostly likely to “know” each other;
(3) When there is no match, it will select a next-hop SP from
its neighbouring signaling points and forward the unresolved
query to the next SP. Simply, flooding based (broadcasting or
multicasting) is most straightforward, but too costly and only
suited for “highly replicated items” [3]. Below we consider
an optimized method to choose a next-hop SP for our use.

Figure.3 Pseudo Code of Nearest-Match Algorithm
Note that, through changing the semantics of the “match”
method of Figure 3, the algorithm can be applied in other
circumstances and treated as a general algorithm.

3.4.2 Optimized Query Forwarding

Every SP keeps track of its immediate neighbouring SPs. In
our query-forwarding algorithm, we select one neighbour as a
next-hop forwarder. As in Pastry [9], we adopt an ID-based
mechanism for nodes.

Each signaling point has a unique identifier or nodeId. When
the look-up process fails to find related data, an SP will select
the neighbour with the nodeId that is “closest” to the key.
Here, in our case, the nodeId is the IP address of the signaling
point. That is, we select the neighbour whose IP address
shares the longest prefix with the key. We acknowledge the
limitations of using IP address as a nodeId but this is an
interim solution. Such a solution becomes inadequate in
certain scenarios such as multi-homed hosts, routers
(multiple interfaces and so IP addresses) and hosts behind
NAT (Network Address Translation) boxes. However, to
focus on our signaling mechanism, we still adopt this solution
for now, for the experiments in this study.
From experimental results of Pastry [9], such a mechanism is
“highly effective” with O (log N) forwarding steps and O
(log N) routing table size.

4. IMPLEMENTATION

In this section we present some implementation details in our
prototype signaling system.

4.1 Hybrid Architecture

Figure.4 Hybrid Architecture
For our prototype a hybrid architecture is adopted (Figure 4).
Inside administrative domains, we adopt a hierarchical design
and construct a signaling sink tree in each domain; for
signaling between domains, we choose a decentralized
architecture and signaling only occurs between root signaling
nodes of the signaling sink tree in each domain.

4.2 Signaling API

Next, we briefly outline the APIs, simplified for clarity.

nodeId= SP_Init() starts the local nodes as signaling points,
initializes relevant states and return the nodeId. During this
process, the SP will acknowledge its neighbours.

SP_LookUp (Key, dht_Entry) searches the DHT by the
nearest-match algorithm to find desired data.
SP_Forward (query) called when no match is found, and a
neighbour’s nodeId is numerically closest to the KEY.

5. PRELIMINARY EXPERIMENTAL RESULTS
To evaluate the proposed signaling system, we implement a
prototype in Java with simple topology as shown in Figure 5.

Figure.5 Topology of test bed

Each node runs Red hat 8 and we emulate three
administrative domains. In each domain, the bandwidth of
each link is stored in the DHT of each node, and is updated
periodically using Iperf [7].

SP_DHT* SP_Entity:: SP_Query_Handler (SP_Query q)
{
 SP_Entity* sp=this;
 SP_DHT* dht_entry= sp getDHTEntry(sp);
 SP_DHT* found=sp lookup(q.key, dht_entry);
 If (found!=null) {
 // Find desired data by

→
→

 exact matching, then return the item
 return found;
 }
 // Otherwise, find the item of maximum matching
 SP_DHT* t;
 SP_DHT* p=dht_entry;
 // variable 'merit' is the merit of matching
 int merit=0;
 while(p!=null)
 {
 int m=sp.match(q.key,p key);
 if (m>merit)
 {
 merit=m;
 t=p;
 }
 }
 if merit ==0, return null;
 return t;
}

→

Leaf
Signalling

Nodes

Root
Signalling

Nodes

Signalling
Sink Tree in

AS2

Signalling
Sink Tree in

AS3

Signalling
Sink Tree in

AS1Leaf
Signalling

Nodes

Decentralized
Cross-domain

Signalling

To simulate network changes, we use tools in Linux to
change the link’s bandwidth, and to allocation IP addresses to
emulate multi-domains.

Figure.6 Preliminary Experimental Results on Query latency

We initialize a query from every leaf node, and query the
bandwidth status in other domains. The targeted link, whose
state is queried, is chosen at random.
The preliminary experimental results on query latency are
shown in Figure 6. From the figure we can see that query
results are returned within 10 seconds, most within 1 second.

6. RELATED WORK

PIER [2] is a peer-to-peer information searching and query
engine based on database technology. It is intended to extend
database query processing facilities into Internet-like
distributed environments.

PASTRY [9] is an application level P2P routing and node
location overlay. It provides an overlay routing/forwarding
mechanism with a key-based approach to organize nodes and
forward messages between them. It is designed to be resilient
and adaptive to node failure and attacks, but not to low level
failure such as network link failure.

Xen [6] is a system-level active services platform, providing
support for virtualization, along with mechanisms for
discovery of the location/existence of xenoservers. It only
manages Xen nodes’ state information.

X-Bone [5] is designed for automated deployment,
management, coordination, and monitoring of IP overlay
networks to reduce configuration effort and increase network
component sharing. It features security solutions and
deployment of multiple concurrent overlays. X-Bone uses
multicast to simplify resource discovery.

Resilient Overlay Network (RON) [4] is an application-
layer policy routing architecture. The nodes of RON monitor
the network path status to detect (and recover from) path
failure. RON uses round trip time (RTT) to estimate one-way
loss probability and stores path performance in a separate
performance database. RON uses sampled information to
select routing paths with higher throughput and low latency.

7. CONCLUSIONS AND FUTURE WORK

This paper presents the design of a scalable decentralized
signaling underlay, which is aimed to apply peer-to-peer style
searching into the management and control plane of the
overlay network. Preliminary experimental result shows that
the query latency is satisfactory and traffic overhead does
have a significant effect on other network flows.

However, there are some limitations that need to be resolved
in future work.

First, the experimental environments emulated so far are too
simple; we need to install it in more nodes to examine the
traffic overhead and query latency in large-scale scenarios.

Second, methods, such as signaling aggregation and data
caching, can be used to optimize query and improve the
efficiency.

Third, state-updating policy should be defined to limit the
transmission of updating message and reduce updating traffic.

Fourth, security issues need to be considered and
implemented.

8. REFERENCES
[1] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon

Thau Loo, Scott Shenker, and Ion Stoica, Complex Queries in
DHT-based Peer-to-Peer Networks, IPTPS, March
2002.Springer-Verlag, LNCS .

[2] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon
Thau Loo, Scott Shenker, Ion Stoica. Querying the Internet
with PIER, VLDB, 2003.

[3] Boon Thau Loo, Ryan Huebsch, Ion Stoica and Joseph M.
Hellerstein. The Case for a Hybrid P2P Search Infrastructure,
3rd International Workshop on Peer-to-Peer Systems (IPTPS
'04), San Diego, CA, Feb 2004.

[4] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek,
Robert Morris, Resilient Overlay Networks, Proc. 18th ACM
SOSP, Banff, Canada, October 2001.

[5] Joe Touch, Dynamic Internet Overlay Deployment and
Management Using the X-Bone, Computer Networks, July 2001,
pp. 117-135.

[6] Paul Barham, et al., Xen and the art of virtualization,
Proceedings of the nineteenth ACM symposium on Operating
systems principles, 2003, P164 - P177.

[7] NLANR (The National Laboratory for Applied Network
Research)'s Iperf project web page:
http://dast.nlanr.net/Projects/Iperf/.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
Scott Shenker, A Scalable Content-Addressable Network, ACM
SIGCOMM, 2001.

[9] Antony Rowstron, Peter Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems,
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms, Heidelberg, Germany, Nov
2001.

Q
ue

ry
 L

at
en

cy
 (s

)

Queries

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

