shared control of networks using re-feedback

Bob Briscoe Arnaud Jacquet, Andrea Soppera, Carla Di Cairano-Gilfedder & Martin Koyabe BT Research, Oct 2004

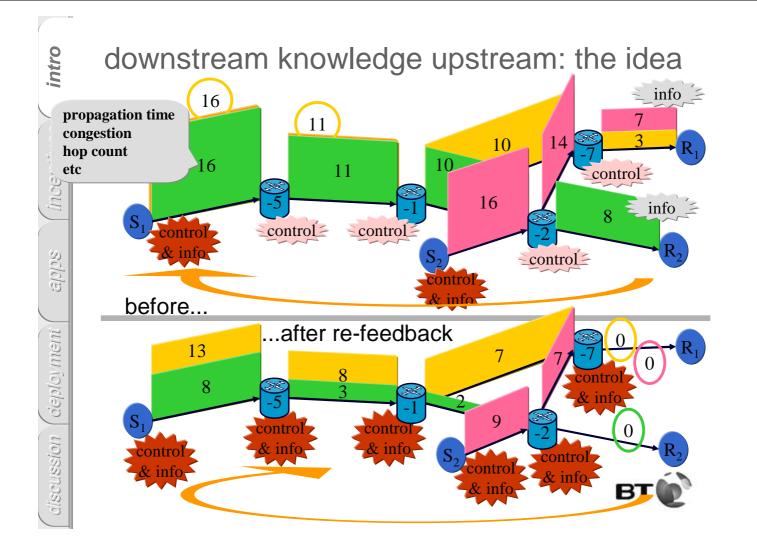
the problem

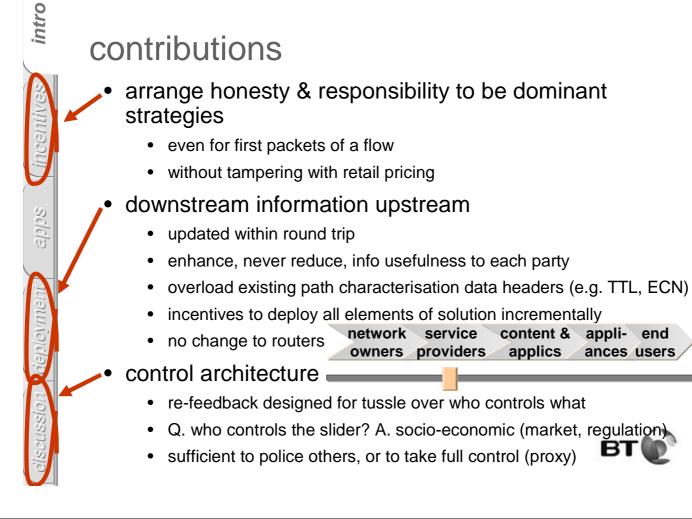
intro

incentives

Solor

aleptoviment


ciiscussion


- context: packet networks
 - focus on Internet (alternatively sensor nets, p2p, optical packet)
- path characterisation underlies basics of networking:
 - resource allocation (incl. controlling flooding attacks), routing
 - control: upstream of each link and of path
 - loading, routing
 - information: collected from downstream
 - explicit reverse messages (routing)
 - explicit or implicit accumulation (in headers) + e2e feedback
- current architecture embeds who controls what
 - routers route, sources control congestion
 - absolute control corrupts need to temper or even reverse

control

info

info

contributions: applications

- congestion control/QoS
 - rate (e.g. TCP) policing
 - differentiated service synthesised from diff. congestion response
 - guaranteed QoS synthesised from path congestion-based AC
 - inter-domain traffic policing emulated by bulk metering
 - incentivise 'slow-enough-start'
 - first line of defence against flooding

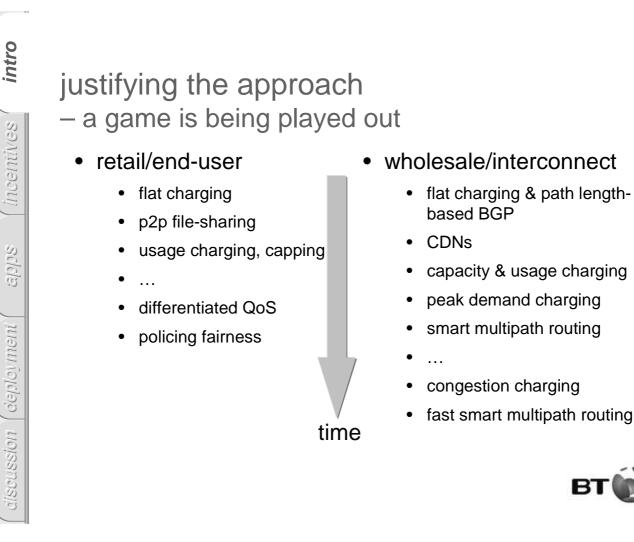
routing

- advert validation
- traffic engineering
- capability-based routing
- not exhaustive
 - re-feedback intended as enabler

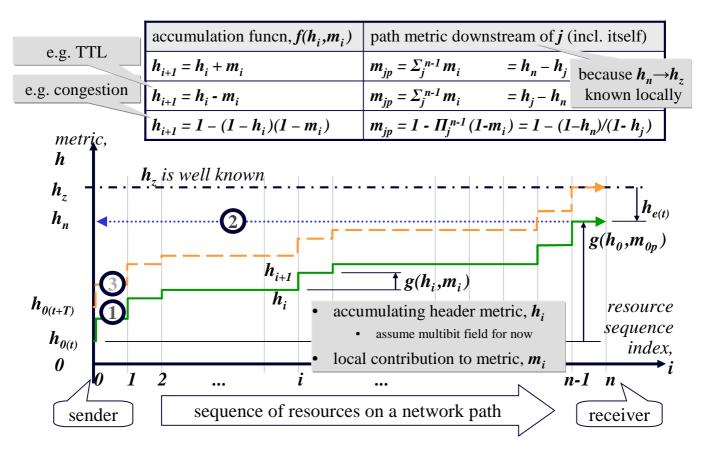
approach

- part of effort to determine new Internet architecture
- determine target, then work out path from legacy
- distributed resource control

- based on network economics
 - recommend mechanism for non-co-operative end-game
 - asymptotic: in practice, some domains may stick before end-game
 - must have mechanisms for end-game in case we arrive there
 - dynamic pricing often used to align incentives (as in previous work)
 - re-feedback saves having to tamper with retail pricing
- work in progress

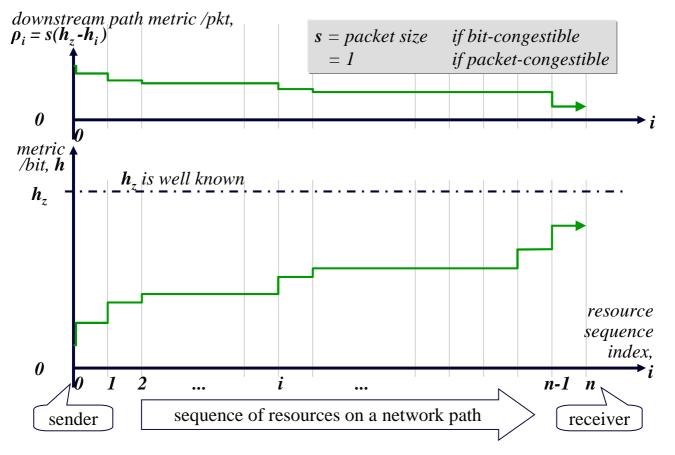

intro

incentives


Solor

deployment

ciiscussion



generalised re-feedback

B

normalised re-feedback

congestion protocol terms

focus on congestion

intro

incentives

SoloB

, deployment

ciiscussion

- to be concrete
- for incentives discussion
- $\rho_i = s(h_z h_i)$ becomes downstream path shadow price (DPSP)
- ECN = Explicit Congestion Notification
- ECL = Explicit Congestion Level aligned at binary multi-
- 're-' = receiver aligned (or re-inserted)

aligned at	binary	multi-bit
sender	ECN	EC∟
receiver	re-ECN	re-ECL

- also assume a binary 'certain' flag in packet headers
 - set by sender once received sufficient feedback to set intial metric(s)

definitions

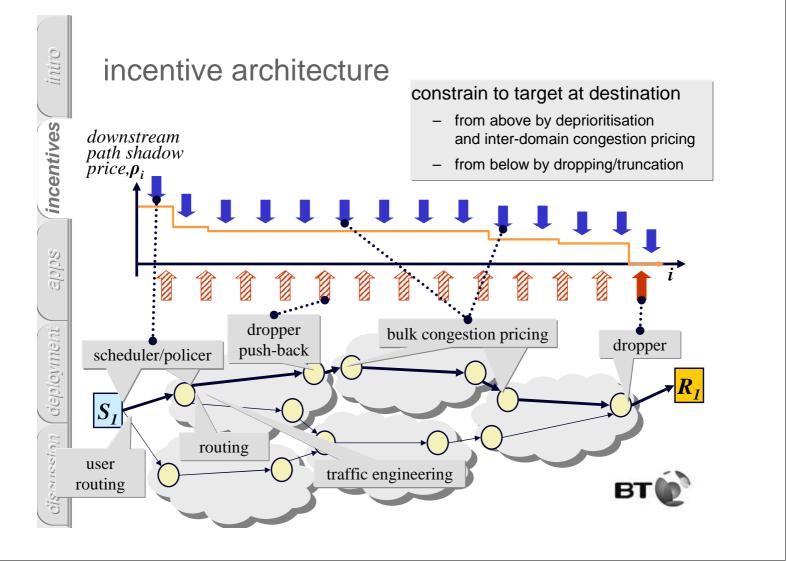
intro

incentives

30/0/2

Gepleviment

discussion


1. The change in congestion, $\Delta E(X_j=1)$, caused by a packet at single resource i is the increase in expectation that the event X_i will occur, if the packet in question is added to the load, given any pre-existing differential treatment of packets.

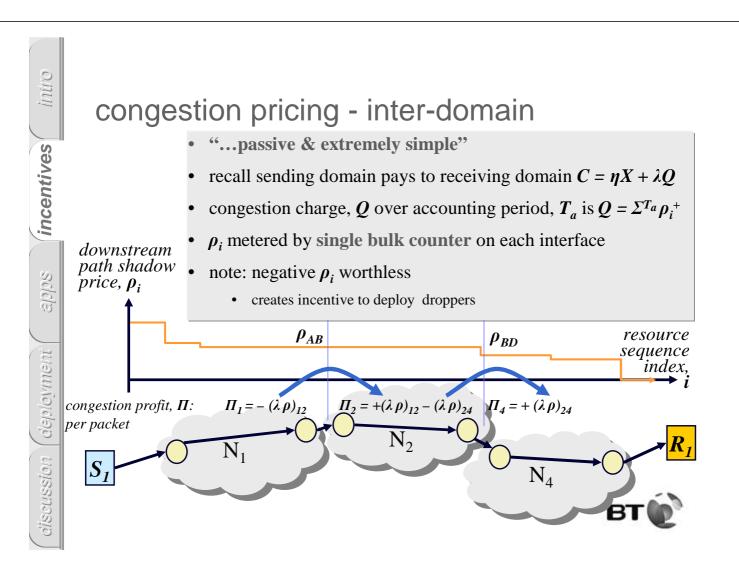
Where X_i is the event that any packet will not be served to its requirements by resource *i*.

2. The change in path congestion level, $\Delta E(X=1)$, caused by a packet traversing the path is the increase in expectation that the event X will occur if the packet in question is added to the load traversing the entire path, given any pre-existing differential treatment of packets.

Where X is the event that any packet sharing any resource along the sequence of resources used by the packet in question will not be served to its requirements.

inter-domain pricing

O.IJUI


incentives

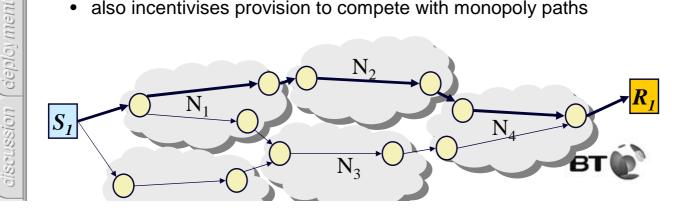
Elolos

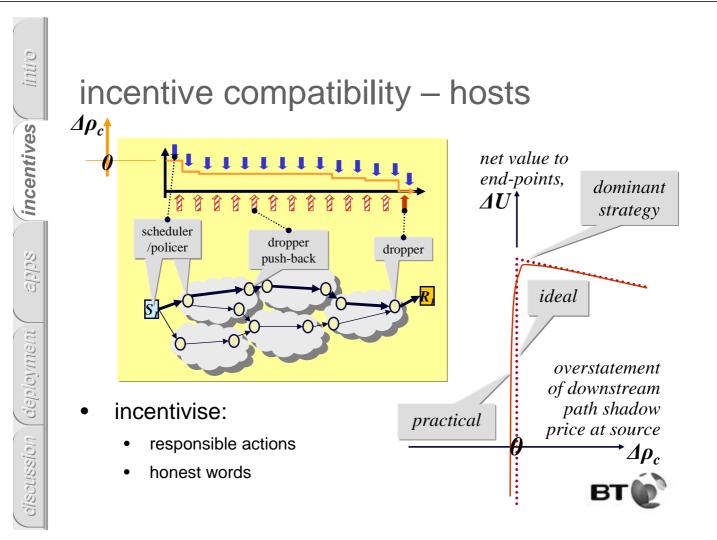
discussion (deploviment

- inter-domain congestion pricing: incentive compatible
 - emulates border policing but passive & extremely simple
- sufficient under perfect competition, but ...
- ... in practice charge by capacity and modulate with congestion
- sending domain pays $C = \eta X + \lambda Q$ to receiving domain (e.g. monthly)
- η , λ are (relatively) fixed prices of capacity, X and congestion, Q resp.
 - at each interface, separate prices agreed for ingress & egress
 - usage related price $\lambda \ge 0$ (safe against 'denial of funds')
 - any receiver contribution to usage settled through end to end clearinghouse

Congestion price, $\lambda \ge 0$ N_1 N_2 N_4 N_4 N

incentive compatibility - inter-domain routing

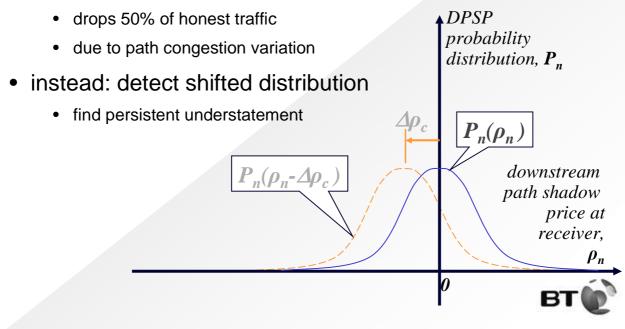

why doesn't a network overstate congestion?

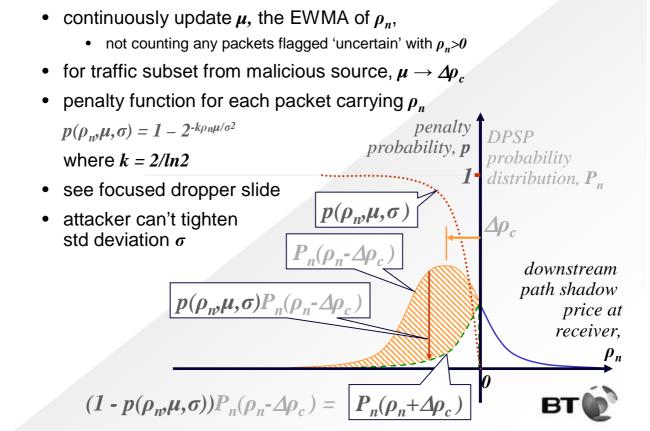

OUN

incentives

Elolos

- **msecs**: congestion response gives diminishing returns (for TCP: $\Delta \Pi \propto \sqrt{\Delta \rho}$)
- minutes: upstream networks will route round more highly congested paths
 - by sampling data N₁ can see relative costs of paths to R₁ thru N₂ & N₃
- months: persistent overstatement of congestion:
 - artificially reduces traffic demand (thru congestion response) •
 - ultimately reduces capacity element of revenue
- also incentivises provision to compete with monopoly paths




downstream path shadow price at rcvr

- congestion being probability [0,1]
- naïve: drop 'negative packets'

penalising misbehaviour with uncertainty

Oluri

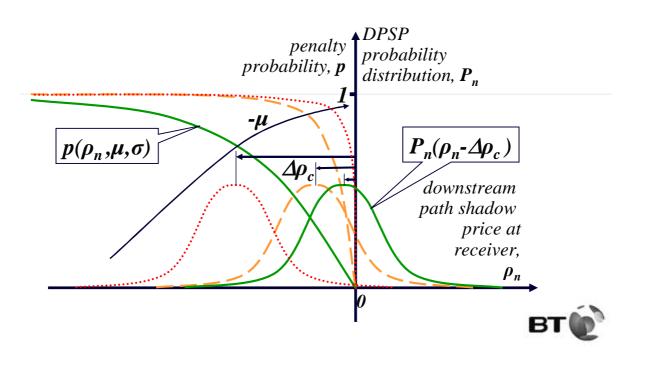
incentives

Solole

Gepleviment

discussion

intiro


incentives

SOCE

inientiovimenti

cliscussion

dependence of penalty function on recent history

focused droppers

- use penalty box technique [Floyd99]
 - examine (candidate) discards for any signature
 - spawn child dropper to focus on subset that matches signature
 - kill child dropper if no longer dropping (after random wait)

push back

- send hint upstream defining signature(s)
- if (any) upstream node has idle processing resource test hint by spawning dropper focused on signature as above
- cannot DoS with hints, as optional & testable

<u>O'IJUI</u>

incentives

SoloB

discussion (deplovment

extending incentives to other metrics

- downstream uncongested delay (emulated by TTL)
 - approximates to 1/2 feedback response time (near source)
 - each node can easily establish its local contribution
 - identical incentive properties to congestion
 - · increasing response time increases social cost
 - physically impossible to be truthfully negative
 - therefore incentive mechanism identical to that of congestion

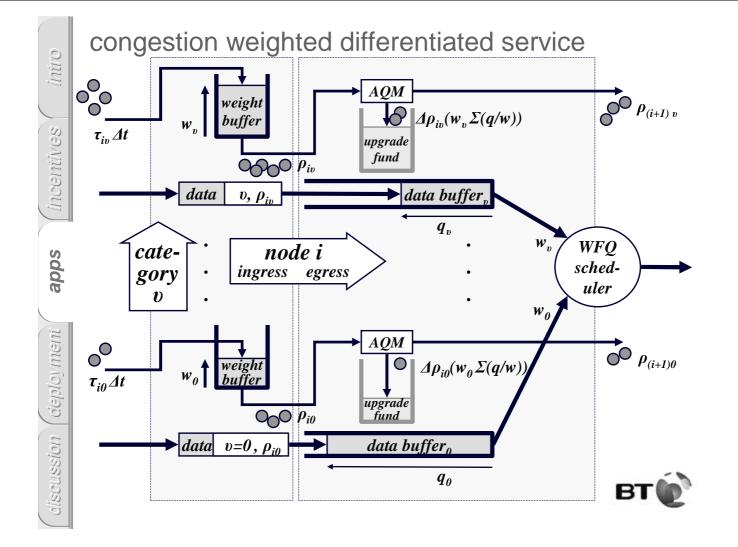
assess other metrics case-by-case

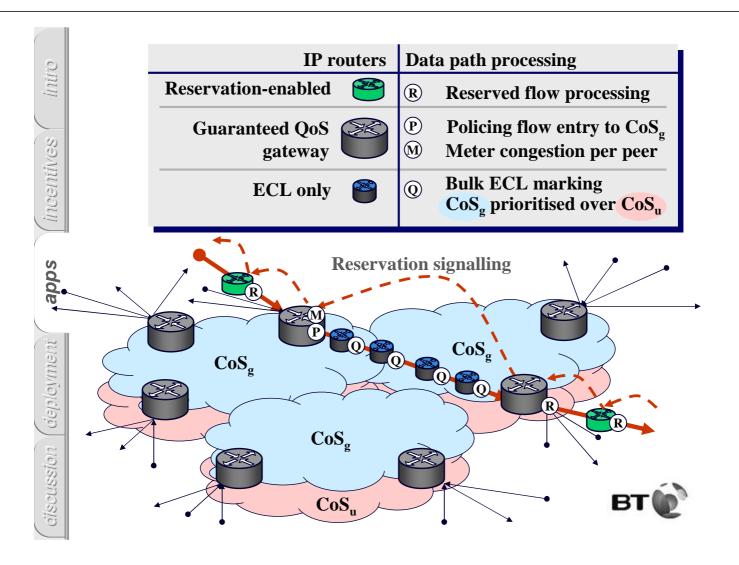
stateless TCP/ECN policer

- rate policing feasible, but TCP policing hard
 - RTT & path loss/marking rate of each flow unknown locally
- TCP congestion avoidance rate converges on

 $\overline{x} \approx \frac{s}{T} \sqrt{\frac{3}{2p}}$ (p << 1) ignoring re-transmit timers

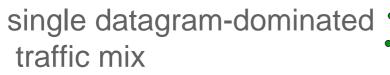
- re-feedback gives truthful values of all these metrics
 - packet headers arrive with prediction of own downstream path
- weight random selection of candidates for drop
 - e.g. Choke-like scheme [Pan00], but based on correct metrics
- inter-domain congestion charging "...emulates border policing"
 - only need TCP policer at first network ingress

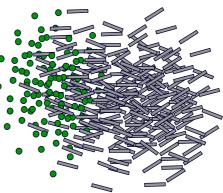

intiro


incentives

apps

(deployment

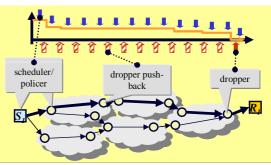

ciscussion



slow-enough-start

- initial value of metric(s) for new flows?
 - undefined deliberately creates dilemma
 - if too low, may be dropped at egress
 - if too high, may be deprioritised at ingress
- without re-feedback (today)
 - if congested: all other flows share cost equally with new flow
 - if not congested: new flow rewarded with full rate
- with re-feedback
 - risk from lack of path knowledge carried solely by new flow
 - creates slow-start incentive
 - once path characterised, can rise directly to appropriate rate
 - also creates incentive to share path knowledge
 - can insure against the risk (see differentiated service)

- current Internet would collapse
 - not designed for all eventualities
 - 10¹² devices, 10⁹ users, RPCs, sensor nets, event avalanches
- with re-feedback
 - service protected against completely uncorrelated traffic mix
 - demanding users can still insure against risk
- for brief flows, TCP slow start sets rate limit
 - ...not technology performance advances
 - with re-feedback, once characterised path, can hit full rate


(incentives

apps

O'UTI

incentives intro

apps

denial of network service protection

- network DDoS causes network congestion (by definition)
- honest sources will increase initial metric
 - which deprioritises their flows relative to uncongested destinations
- if malicious sources don't increase initial metric
 - their traffic will go negative either at the point of attack or before
 - can be distinguished from honest traffic and discarded
 - push back will kick in against persistent attacks
- if malicious sources do increase initial metric
 - scheduler at attacker's ingress will deprioritise attacker
 - only honest sources sharing full path with attackers lose out greatly
- could hijack zombie sources to pay for higher class service
 - incentivises their owners to sort out virus protection
 - marginal cost of network upgrade paid by those that don't!

3

 N_{A}

8

3

S

routing support

• can automate traffic engineering (damped response time)

S

- can validate route adverts
 - re-balances info asymmetry

 S_2 N_1 T_1 T_2 T_2

apps

O'UTI

*inúr*o

incentives

apps

deployment

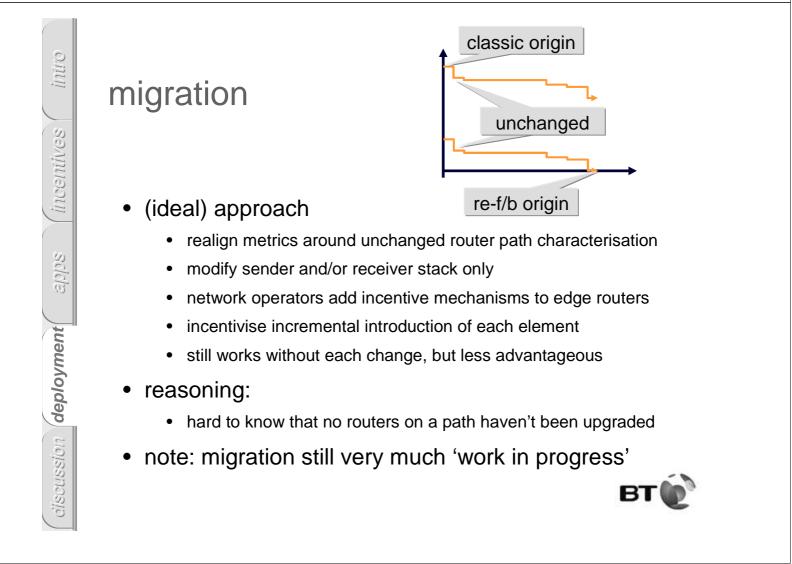
ciiscussion

which metrics?

O'UTI

incentives

SOCE


discussion (deployment)

- many applications need niche path metrics
- but which are necessary and sufficient?
 if we were to define a new Internet architecture
 - congestion
 - uncongested delay

• many more possible, but perhaps not necessary

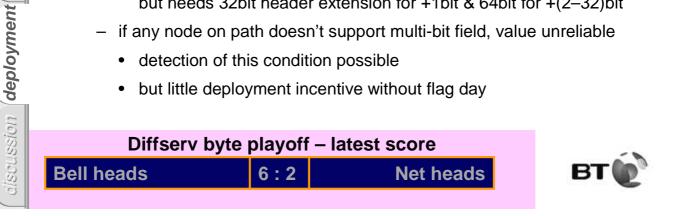
- explicit loss-rate (esp for wireless)?
- per bit and per packet congestion?

migration: re-ECN

O'UTI

incentives

30/0/S


intiro

incentives

SoloB

ciscussion deployment

- insufficient codepoints to be sufficiently responsive
 - we know this anyway (e.g. [Ganesh02] or XCP [Katabi02])
- can use the three code-points we have
- multi-bit field: no easy migration
 - effectively impossible (?) with IPv4 (& MPLS!)
 - can use IPv6 hop-by-hop options added when accuracy needed but needs 32bit header extension for +1bit & 64bit for +(2-32)bit
 - if any node on path doesn't support multi-bit field, value unreliable
 - detection of this condition possible
 - but little deployment incentive without flag day

migration: re-TTL

- need to avoid interaction with loop detection
 - set target at destination $h_z = 16$ (say), to allow headroom for path variation without triggering drop due to 'TTL expired'
- need to add feedback in transport layer protocols
 - TCP, RTCP, DCCP, etc.
- need to standardise the unit conversion with time
- issue: TTL is a pretty coarse measure

migration: certain flag

- necessity
 - relays need to average metrics for traffic eng, route validation, dropping etc.
 - uncertain metrics would pollute averages if not flagged
 - more so if traffic matrix becomes dominated by short flows

can overload certain flag

- 're-feedback capable transport' flag
- IPv4 header: bit 49 (reserved but in much demand)
- IPv6 header: incorporated into header extension for mulit-bit ECN
- incentives as described earlier are arranged
 - to flag certain when you are
 - and not when you're not

вт

information gains & losses

aligned at	knowledge	sender	relay	receiver
sender	upstream	-	~	✓
receiver	path ¹	-	x 2	x ²
sender	downstream path	√3	×	-
receiver		\checkmark	\checkmark	-

notes

- 1. upstream path knowledge is of little use to anyone for control
- 2. both alignments can be included (giving whole path knowledge too)
- 3. for TTL, no feedback meant no sender downstream knowledge

intiro

incentives

3/0/0S

ciscussion deployment

deployment incentives

- congestion pricing
 - prevents wasteful investment in resources not targeted at demand
 - initially for access providers to predominantly receiving customers

policer/scheduler

reduces congestion charges to downstream operators

dropper

• ensures sufficient congestion charges are paid to receiving access provider by upstream provider to deliver to destination

related work

- MacKie-Mason & Varian "Pricing the Internet" (1993)
 - Smart Market idea of placing bids in packets
 - admitted it was impractical also poor feedback
- Clark "Combining Sender and Receiver Payments in the Internet" (1996)
 - decrementing payment field in packet no e2e feedback
 - no separation between technical metric and price to apply to it
- Kelly et al "Rate control for communication networks: shadow prices, proportional fairness and stability" (1998)
 - the game theoretic basis, but with the direction of payment the wrong way round
 - consequently needs retail dynamic pricing
- Savage et al "TCP Congestion Control with a Misbehaving Receiver" (1999)
 - ECN nonce only effective if sender's & network's interests align
- Constantiou & Courcoubetis "Information Asymmetry Models in the Internet Connectivity Market" (2001)
 - describes the inter-domain info asymmetry problem
- Zhu, Gritter & Cheriton "Feedback Based Routing" (2003)
 - dishonest inter-domain routing is better solved by measurement than authentication

O'WHI

incentives

SOCE

discussion (deployment

further work

- analysis of accumulation of variation of congestion along a path
 - simulation to validate dropper vulnerability
- formalise game theoretic analysis (largely building on Kelly)
 - adding routing & slow-enough-start
- detail design of applications
 - fairness, slow-start, QoS, routing, DoS (esp dynamic attacks)
- analyse deployment with heterogeneity
 - technical and business
- complete detailed protocol design incl. migration
 - simulation & implementation

discussion

- why aren't networks run like this already?
 - must guess for first packet
 - requires per header storage in sender transport layer
 - without incentive framework, if use info for control, truth incentives distorted
- is the tussle for control in this space strong enough to need re-f/b?
- Iayering violation?
 - passing info up the layers (ECN) was anathema is re-feedback 'worse'?
- alternative to route advert authentication?
 - characterises at router layer granularity, not domain layer
 - is this too much info symmetry for operators?
 - is characterising only the path your access provider offers sufficient?
 - to empower user choice without loose source routing?
- why isn't even congestion marking being deployed commercially?

•

inúro

incentives

30/0/2

discussion (deployment

contributions

- arrange honesty & responsibility to be dominant strategies
 - even for first packets of a flow
 - without tampering with retail pricing

downstream information upstream

- updated within round trip
- enhance, never reduce, info usefulness to each party
- overload existing path characterisation data headers (e.g. TTL, ECN)
- incentives to deploy all elements of solution incrementally
- no change to routers
 network service content & appli- end owners providers applics ances users

control architecture

- re-feedback designed for tussle over who controls what
- Q. who controls the slider? A. socio-economic (market, regulation)
- sufficient to police others, or to take full control (proxy)

contributions: applications

congestion control/QoS

- rate (e.g. TCP) policing
- differentiated service synthesised from diff. congestion response
- guaranteed QoS synthesised from path congestion-based AC
- inter-domain traffic policing emulated by bulk metering
- incentivise 'slow-enough-start'
- first line of defence against flooding

routing

- advert validation
- traffic engineering
- capability-based routing
- not exhaustive
 - re-feedback intended as enabler

вт

intiro

incentives

Solor

discussion (deployment

O'UTI